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TECHNICAL MEMORANDUM X-53829

A DISCUSSION OF ORBITAL WORKSHOP ORIENTATION
AND GRAVITATIONAL EFFECTS

INTRODUCTION

Most of the material contained in this report is an extension and
documentation of the work performed to support the George C. Marshall Space
Flight Center (MSFC) "Early Saturn V Workshop' studies. During these
preliminary design studies, this group was assigned the task of evaluating
the control requirements for various attitude hold modes, especially the fuel
requirements and the momentum storage capacity over an extended time inter-
val. A quick assessment of the energy requirements necessary to attitude hold
Workshop B (OWS-B) in an inertial, solar fixed mode was made using simplify-
ing assumptions. However, earth and orbit fixed modes were also evaluated
for comparative purposes. The two basic configurations studied were the side
viewing and the end viewing Apollo Telescope Mount (ATM). Both have similar
mass and inertial properties with the x-axis being near symmetric with mini-
mum inertia. The material presented, herein, is in the form of "A Tutorial
Discussion of Orbital Workshop Orientation and Gravitational Effects. "

The "Early Saturn V Workshop' study was conducted under the following
ground rules:

i. 1971-73 launch — late 1968 Phase D start
2. 28.5-to 50-degree orbital inclination

3. 270-n. mi. altitude

4. Zero-g operation

5. One to one and one-half-year lifetime

6. Dry launched workshop with integral ATM, manned Command
Service Module (CSM)



7. Minimum modification to Workshop A
8. Maximum use of present equipment and subsystems
9. Three-man operation with six-man provisions as an option

The zero-g operation ground rule precludes a spin stabilization mode.
""Maximum use of present equipment and subsystems' requires that the
"integral ATM" be hard mounted to OWS~B which precludes a long axis per-
pendicular to the orbital plane (POP) mode orientation while viewing the sun.
However, for completeness the POP mode orientation is evaluated, in which
case both the ATM and solar panels must be gimbaled. For either a solar
inertially fixed mode or a semi~-solar fixed mode with one body axis constrained
to lie in the orbital plane, it is not necessary to gimbal the ATM or solar panels.

Based on the ground rules, the following assumptions are made to pro-
duce worst case conditions and simplify analysis procedures:

1. Quick-look simplified analysis utilizes fixed time of year, constant
circular orbit and an energy evaluation over one orbital time period.

2. Winter solstice launch at 270 n. mi. altitude
3. Solar attitude hold over one orbit

4. Energy requirements for attitude hold due primarily to gravity
gradient torques

5. Hard mounted ATM for the side and end view ATM modes
6. Body axes are solar oriented for hard mounted ATM configurations.

At a 270-n. mi. altitude, gravity gradient torques will be the dominant
environmental forces acting on the workshop and, for preliminary design pur-
poses, will determine the control system energy requirements for attitude
hold. Although other environmental forces such as aerodynamics and solar
pressure will act on the workshop, only the gravity gradient effects are con-
sidered in this report. First, the basic gravity gradient torque equations are
derived in general form, after which various coordinate systems must be
defined that relate the local gravity gradient vector to the workshop's body
fixed control axes. The coordinate systems are defined in physically meaning-
ful geo-physical terms and the necessary coordinate transformations are



carried out. Thenthe gravity gradientequations are evaluated for several
attitude hold modes. The end view ATM configuration is in a solar inertially
fixed mode (solar mode), the side view ATM configuration is in a semisolar
fixed mode with the x-axis constrained to lie in the orbital plane (XOP mode),
and the gimbaled ATM configuration is in an earth fixed mode with the x-axis
constrained to lie perpendicular to the orbital plane (POP Mode). The effects
of principal axes misalignments on gravity gradient torques are evaluated for
the POP mode and the gravity gradient mode (GG Mode) with the axis of mini-
mum inertia aligned with the local vertical. For earth or orbital fixed modes,
an experiment package designed to view the sun or stars must be mounted to the
workshop on gimbals. The gimbals are articulated as needed to track the
specified target, which requires definition of "look angles.'" Several such
angles are defined and closed form solutions obtained in the section on "Solar
Look Angles.'" Several such angles are needed to evaluate the gravity gradient
equations. Finally, using simplifying assumptions, involving fixed time of
year analysis which neglects orbital regression, the energy requirements
necessary for attitude hold against gravity gradient are summarized for the
selected attitude hold modes. A comparison of requirements indicates that the
XOP mode is near optimal and is preferred over the solar inertia mode. For
earth fixed modes, the POP mode has several advantages over the GG mode, in
particular the effect of principal axes misalignments or attitude errors requires
less fuel for control action.

It is felt that the presented material can be easily utilized for "quick
look™ analysis of orbital orientation and gravity gradient effects, and should be
useful for preliminary design purposes. It is also felt that the material is
somewhat elementary, but should give an "engineering feel" for the problems
involved in selecting a preferred attitude hold orientation for an earth orbiting
vehicle. The data presented can be easily adapted for use in evaluating other
attitude hold orientations. For completeness the standard Euler equations are
listed in the appendix.

GRAVITY GRADIENT TORQUE

The easiest means of describing the basic gravity gradient torque is in
terms of two equal mass units connected by a rigid massless rod in a circular
earth orbit as shown in Figure 1. The forces F; and F, represent forces
from the gravitational field in a geocentric rotating reference system (local
vertical coordinates) that act on the mass units m; and m,, respectively.



Since the gravitational force acting on a given object varies inversely with the
square of the distance between the earth's center and the object's center of
mass, the force F; is greater than the force F, . Each force produces a
torque about the center of mass; however, since each force acts on the same
lever arm, L, a torque in the counterclockwise direction exists. This
torque acts to reduce the attitude error ¢ and to align the rod with the local
vertical. When the attitude error angle is zero the two forces act through the
center of mass of the dumbbell, and no net torque exists since the lever arms
are zero. This position is referred to as a "stable equilibrium point" of an
orbiting satellite under the influence of gravity.

Another equilibrium point exists
as indicated in Figure 2. If the dumb-
bell lies in a horizontal plane, the two
tip masses are at the same distance
from the geocenter so that the forces
F, and F, are equal. Since the lever
arm on which each force acts is also
equal, no net torque exists. 1If an
attitude error angle €, is introduced,

the force F, exceeds the force F,
and a torque is generated which tends
to increase the attitude error angle.

In this case the gravity gradient torque

Geocenter

FIGURE 1. STABLE EQUILIBRIUM

is destabilizing. Hence, the horizon-
tal plane alignment is referred to as
an "unstable equilibrium point."

For a satellite in orbit several , n=R,tP
stable or unstable equilibrium points °
may exist, depending upon the vehi-
cle's mass distribution properties.
In general, a rigid, non-spinning
satellite with sufficient differences

Geocenter

FIGURE 2. UNSTABLE EQUILIBRIUM



in the principal moments of inertia tends to align its axis of minimum inertia
with the local vertical and its axis of maximum inertia with the orbital spin
vector. In actual practice, finding equilibrium points is usually achieved
through the use of elaborate digital computer programs and facilities. However,
the vector components of gravity gradient torque are derived in general form
using the inverse square law for the force between the earth and an orbiting
body composed of mass elements.

Figure 3 represents a body composed of mass elements, m, , ina
circular orbit of radius R0 , about the earth. The vector R0 is directed
from the geocenter to the center of mass of the body; the vector 'i"l is directed
from the geocenter to the ith masgs element, and the vector ].-3—1 is directed

from the center of mass (CM) to the ith mass element. The vectors are
defined relative to two coordinate systems: an inertial frame, denoted by the
subscripts 1, with its origin at the geocenter and a body-fixed moving frame,
denoted by the subscript b, with its origin at the body's CM. The gravitational

t —
force vector, Fi , acting on the i h mass particle is directed opposite r,
and is given by

- Spm T,
F. = ——7— (1) 2,
i (ri)

23

where p=GM. G is the universal orBIT

Y ™

gravitational constant and M is the '
mass of the earth. p\~®
_ The moment (torque) due to
Fi is given by the vector cross pro- R, 7 " ORBITING BODY
duct ,

T, =P x F

T i i (2) "

EARTH CENTER

1
"
+
ol

o

The summation of all such )
moments_gives the gravity gradient {
torque, T , which acts on the
body .

.
13

ST

X3

FIGURE 3. COORDINATES FOR
GRAVITY GRADIENT TORQUES
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Assume that in body coordinates

Pi = Xilb + Yin + Zikb
(4)
Ro = Rxlb + Rbi + Rzkb
and from Figure 3, ?i:—ﬁo + 51 . Expanding 1/(1‘1)3 = 1/|?ii3 in a
power series gives
1 1

]ﬁo + 1'5'i ]3 {[(X1 N RX)Z + (Yi + Ry>2 + (zi + Rz)z] 1/2} )

_3
X,2+Y,2+Z_2+R2+R2+R2+Z(X.R +YR +ZR )} /2
i i i X y z Ix iy iz)

]
PN,

i

P\) 3R -DP
— 1 1 — ..3— _—1-. —— O 1 + ———————————
“\R? 2/\R RZ
(s} (6] (8]
3R . P
_ 1 { - o} i (5)
R'0 RO ’



where the second and higher order terms in Pi may be neglected since

Pi << R0 . Substituting equation (5) into the torque equation (3b) gives

umi . 3R0 . Ei
= e X ), -
R i G | (s
0 0
_ _ uml 3§0 P1
= Z(P1 R+ P x P1> = ||t =7
o o
_ umi 3R P1
- -Z<P1>< RO> — )|t - &
[0 o
—H _ﬁo ) 5i
- TxE) - B xR
R Zmi( " Ro) 3Zmi<PiX B R’ (6)

By definition of the CM in body coordinates, Em P =0, the first term of
equation (6) is zero leavmg

_ 3 x5 )R -7
¢~ BT [mepi X RO>(RO PD}
3K . _ .
= [Zmi [(YiRZ ZiRy>1b + (ZiRX XR i

+ (X.R —Y.R)k ](X.R +YR +ZR )} .
iy i'x) b ix iy iz

By carrying out the indicated scalar multiplication and using the following
definitions for products and moments of inertia

- Zmi (Yiz + Ziz\) 3 (8)
. Zmi-(zi2 + Xf) ;

i. X the origin of the body coordinates is not assumed to be located at the CM
then the first term of equation (6) is not zero and the ensuing equations are
not valid.
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I =1 = ) mXY ,
Xy yX iii
1 =1 = )mXZ, ,
XZ zZX i
I = 1 = )mY,Z,
yz zy itii

with the relations

Em.(Y.z—Z.2> = Zm.(Y.2+X2-X2-Z.2> =1 -1 , (9)
1 1 1 1 1 1 Z y
Zm,(Z,Z—X,2> = )m (z +Y2-Y? X2> =1 -1 ,

1 1 1 1 X Z
Zm.<X.2-Y.2> = )m <X.2+z2 ZZ-Y.2> =1 -1

1 1 1 1 1 y X

the gravity gradient torque equation becomes

= _ 3Hu - 2 2 _ .
T, - Y [(IZ Iy)RyRZ + IZy(RZ Ry) +I RR IXZRXRy]lb
+—3—‘{,—_(1 —I)RR +1 (RZ—R2>+1 RR -1 RR |
R\ x 'z/7zx xz\'x "z yz y X yx y z|°b

(I —I)RR +1 (RZ—R2)+I RR -I RR ka
Ny X/ Xy ¥W\Yy X ZX 2y Zy Z X

(10)

+
Owul'g) @)

The gravity gradient torque components in body fixed coordinates, denoted by
Tx’ T , and Tz’ are obtained by equating to the vector coefficients in the

torque equation above.



Since the torque and momentum components will be derived for several
selected vehicle orientations, the equations can be simplified by using the
following definitions for the multiplicative coefficients containing vehicle and
orbital parameters:

_ 3 -
C, = (3GM/2R})(L Iy) , (11)
C = (3GM/2R3%(I -I) , and
y o X z
C = (3GM/2R% (I -1) , with the relation
Z o'y X

At this point, it is assumed that the moments and products of inertia
are known or will be given. It is further assumed that the parameters which
define the orbit will be specified, as the orbital inclination, orbital altitude,
time or year, and position of orbital injection. Hence, Ro will be known or

can be calculated in terms of a local vertical coordinate system. But for use
in the torque equation, the components of Ro must be derived in terms of the

body fixed frame. Such a derivation will require the definition and use of
several coordinate systems and transformations between systems. The actual
number of coordinate systems depends upon the specific mission of the orbiting
vehicle and its desirable attitude orientation, and upon the accuracy in evalu-
ating the torque components and the time interval over which the evaluation is
to be made. Also, the transformations between coordinates should be related
to parameters that have physical significance. Once the components RX, R,

and RZ have been obtained they are substituted into the gravity gradient torque

equation (10), which is valid for any spacecraft in a circular orbit about the
earth with body coordinates centered at the CM.

COORDINATE SYSTEMS

In computing gravity gradient torques on the Solar oriented orbital
workshop (OWS) several coordinate transformations are necessary to relate
the orbital plane, the earth's equatorial plane, and the sun line in the ecliptic



plane, as slowly changing functions of time, to the OWS body coordinates.

These three planes relative to the celestial sphere provide the basic references
for development of the coordinate systems. In this development, standard
reference systems as given in "Project Apollo Coordinate System Standards,"
June 1965, OMSF report number SE 008-001~1, will be utilized. All the coor~
dinate systems which are defined in the following paragraphs are right-hand
systems and the rotational angles are measured in a positive sense using the
right-hand rule. First, the concept of an inertial reference must be established.

A belt of sky extending about 9 degrees to each side of the ecliptic plane
is called the ""Zodiac." Since ancient times, the Zodiac has been sectioned at
intervals of 30 degrees along the ecliptic. Each 30-degree section is desig-
nated by a "'sign of the Zodiac" and bears the name of the constellation which
occupied it in the second century B.C. At that time the 'sun entered the Zodiac
Aries, 7T, atthe vernal equinox. The sun-Aries line is used as an inertial
reference in the ecliptic plane, and the earth's perihelion is specified by the
angle, A, subtended by the sun-Aries and sun-earth lines in the ecliptic plane.
The earth at winter solstice is near perihelion, the actual deviation as well as
the angle A are obtained from ephemeris tables using sidereal time.

For practical design purposes it can be assumed that the earth'’s orbit
is circular instead of elliptical and that the earth's position at winter solstice
is identical with perihelion with A = 90 degrees. Furthermore, the earth-moon
barycenter is assumed to be identical with earth center. These assumptions
result in considerable simplifications in heliocentric sun-earth inertial reference
coordinates and orbital dynamics. The earth moves about the sun at a constant
angular rate, the earth's solstices and equinoxes occur at even 90-degree
intervals measured from Aries, the moon's gravitational effects are ignored,
and ephemeris tables and calculations are not necessary to specify the earth's
seasonal position.

Some of the simplified earth-sun relations are shown in Figure 4. The
heliocentric inertial coordinates are denoted by (X;, Y;, Z4) with A specify-
ing the earth's seasonal position. Note that when the inertial coordinates are
moved to earth center the position of the sun is specified by the angle, A,
between the earth-Aries and earth-sun lines. It is apparent from Figure 4
that A = A + 180 degrees and that both A and A have the same angular rate
which is about 0. 9565 degree per solar day. At the vernal equinox the sun is
between the earth and Aries with A = 0 degree, while at the winter solstice
the earth-sun line is perpendicular to the earth-Aries line with A = 270 degrees.
The earth's equatorial plane makes a constant angle, e = 23.45 degrees with
the ecliptic plane. The ascending line of modes is identical with the Aries
inertial reference.

10



SUMMER VERNAL EQUINOX
SOLSTICE MAR. 21
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ECLIPTIC PLANE
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Additional properties of the ecliptic, equatorial and orbital planes which
are utilized to specify the inertial position of an earth orbiting spacecraft are
shown in Figure 5. The top part of Figure 5 represents planar look at the
earth and sun as viewed from Aries. Note that the sun's vertical rays relative
to the earth's surface obtain their maximum deviation from the equator at
either the winter or summer solstice. A spacecraft launched at winter solstice
with the ascending line of nodes on the morning terminator could achieve a
maximum angle, %, between the ecliptic and orbital plane. The angle of
orbital inclination is denoted by ¢, and Maxy =e + ( degrees. However,
due to orbital regression, ¥ takes on all its possible values over a time inter-
val determined by the orbital altitude and inclination. The top part of Figure 5
depicts the equatorial/orbital line of nodes aligned with the Aries inertial
reference, but due to orbital regression the two lines of nodes are soon mis-
aligned by the angle © shown in the lower part of Figure 5.

The lower part of Figure 5 indicates the angular relations necessary to
relate a spacecraft's orbital position to either inertial or solar coordinates.
The subscript numbers on angles indicate the sequence in which the rotations
must occur. The count may be either forward or backward, but the arrows
indicate a forward count rotation that brings the solar into the spacecraft orbital
coordinate system. The subscript letters on letters indicate specific reference
frames which are defined in the following paragraphs. The coordinates used in
this report are earth centered unless specified otherwise. The relation between
the solar, inertial and geocentric coordinates are illustrated in Figure 6.

(XS, YS, ZS) are solar fixed coordinates with the Xs—axis directed

from the earth to the sun, the Zs-axis points north and perpendicular to the

ecliptic plane, and the Ys—axis completes the right-hand triad.

(Xl’ Y ZI) are inertial coordinates with the X, -axis inertially fixed,

la
pointing toward Aries,and the 2

1

1-axis perpendicular to the ecliptic plane

pointing north. The third axis, Y completes the right-hand triad. The

1 3
solar coordinates are transformed into the inertial system by rotating negatively
about Zs by the angle A . This rotation represents the apparent rotation of

the earth in the ecliptic plane relative to the sun as measured from the vernal

equinox.

(Xg’ Yg’ Zg) are geocentric inertial coordinates with the Xg-axis in

the equatorial plane pointing toward Aries (aligned with Xl) , the Zg-axis
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directed along the earth's mean rotational axis, positive northward, the
Yg—axis completing a right-hand system in the equatorial plane. The inertial

coordinates are transformed into the geocentric inertial system by a negative

rotation about X1 by the angle e = 23.5 degrees . The angle e, between

the ecliptic and equatorial planes, is glways constant and Xl = Xg is always

on the ascending line of nodes between the two planes.

The relation between the local vertical relative to the spacecraft and the
orbital and equatorial planes is also illustrated in Figure 6. The time varying
angles are the orbital angle, ¢, which specifies the spacecraft position
relative to the ascending line of nodes between the orbital and equatorial planes,
and the orbital regression angle, Q@ , which specifies the ascending line of
node position relative to inertial direction of Aries (the line of nodes between
the equatorial and ecliptic planes).

(Xe’ Ye’ Ze) is an earth-equatorial system with Xe on the ascending
line of nodes between the equatorial and orbit planes, Ze = Zg is perpendicular

to the equatorial pointing northward and Ye completes the triad in a positive

sense. The geocentric coordinates are transformed into the earth equatorial
system by a rotation about Zg by the angle €, between the ecliptic~equatorial

and equatorial-orbit lines of nodes. The angle Q is denoted as the orbital
regression angle, and its time derivative as the orbital regression rate. The
regression rate is always negative for orbital inclinations less than 90 degrees,
hence @ will usually be a negative angular rotation.

(Xo, Yo’ ZO) is an orbit-fixed coordinate system with XO = Xe on the

ascending line of nodes between the equatorial and orbit planes, z, is perpen-

dicular to the orbit plane pointing northward (aligned with the orbital spin
vector), and Y0 completes the triad. The earth-equatorial system is trans-

formed into the orbital system by a rotation about Xe by the orbital inclination

angle, denoted by ¢ . The angle of inclination can be either positive or negative,
but it always remains constant once its initial value is given. The angle of
inclination is usually measured positively from the ascending line of nodes,

when the spacecraft crosses the equator going from southern to northern hemi~
sphere. When negative values of inclination are used, the reverse type cross-
ing is used as a reference node (retrograde orbits).

15



(Xp, Yp, Zp) is a rotating local verticdl system with Xp directed

along the local gravity vector from the earth's center to the spacecraft in orbit.
The triad is completed by Yp . The third axis, Zp , is perpendicular to the

orbital plane directed northward and aligned with the spacecraft (S/C) momen -~
tum vector. The orbital fixed coordinates are transformed into the local
vertical system by rotating about Zo = Zp by the orbital angle ¢ , which is

defined by the orbital angular rate, W0 , times orbital time, t.

The transformation from solar to local vertical coordinates is symboli-
cally expressed by the following sequence of rotations.

Xs_—»xl———e_.__’xg___—_. e_L_._. 0_—_——po
I R Bt g ————— e—+>Yo—~Yp

-A 7 y/ Q y/ Z ® y/
S —— ] —— g —— € —————p 0 ——t— p

The environmental forces acting on the spacecraft are usually given or
calculated in the local vertical coordinate system, for example, gravity acts
along the negative Xp axis. However, the effect of the environmental forces

on the spacecraft motion are usually evaluated in terms of body fixed coordi-
nates. The body fixed system is usually chosen such that the cross products
in inertia are zero and/or the body is ideally oriented with respect to a defined
reference coordinate system. Hence, definition of at least two additional
coordinate systems is necessary.

(Xr’ Yr’ Zr) are mission dependent reference coordinates on which

the body axes are to be oriented. If the spacecraft is unperturbed, the body
axes (Xb’ Y, Zb) are identical to the reference axes. However, if the

spacecraft is perturbed from the desired reference, then a three-angle modified
Euler transformation (type 3, 2, 1) is necessary to relate the two systems.
The modified Euler angles are standard airplane angles which are valid for
small angle approximations.
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(Xb, Yb’ Zb) are body fixed coordinates which are usually chosen so

that the cross products in inertia are zero. The roll axis, X is aligned

b 3

with the longitudinal body axis. For spacecraft, Zb is aligned with a bench-

b’ and Yb completes the triad. For aircraft, Zb
completes the triad and Yb is aligned with the right wing perpendicular to Xb .

In either case, Yb is the pitch axis and Zb is the yaw axis. For the orbital

workshop Xb is along the longitudinal axis and positive in the direction of

thrust application; Yb is along a solar panel (right wing), and Zb

with benchmark position III. The side view ATM points in the negative 7Z

mark perpendicular to X

is aligned

b
direction (aligned with Position I) and the end view ATM points in the negative
Xb direction.

In ATM mode operation it is desirable to have the workshop solar
oriented. Hence the solar coordinates are chosen as the reference coordinates
and the unperturbed body axes are related to the reference coordinates. The
perturbed body axes are then related to the reference coordinates by a modi-
fied Euler angle transformation.

The environmental forces in local vertical coordinates are related to
the reference coordinates through the previously defined transformations in
the orbital, equatorial, and ecliptic planes.

TRANSFORMATIONS

Because the ATM must be solar oriented, solar coordinates must, in
some manner, be related to the reference coordinates. This relation depends,
of course, on the particular OWS configuration as the side or end view ATM.
But in any case, the transformation between the various coordinate systems,
as defined in the preceding section, must be developed to find the components
~ of the orbital radius vector, which are known in local vertical coordinates, in
solar coordinates. First, the individual fransformation matrices are obtained,
and are then combined to give the transformation matrix between local vertical
and solar coordinates. The resultant matrix is composed of nine directional
cosines which are a function of the rotational angles. The matrices are denoted
by capital letters with subscripts that indicate the coordinate systems being
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related. For example, Asl means that the matrix operates on a vector in

inertial coordinates to produce its components in terms of solar coordinates.
Vectors are denoted by letters with superscript bars and with one subscript
letter to indicate the coordinate system. A superscript tilde indicates the
vector transpose of a conventional vector, X , as used in forming vector-
matrix equations. Unit vectors are denoted by i, j, and k in the respective
X, ¥y, and z directions with one subscript to indicate the coordinate system.

The previously defined sequence of transformations is carried out in a
rotation-by-rotation manner starting with solar and ending with local vertical
coordinates:

1. The solar-inertial transformation is obtained by a rotation about Z
by the angle A :

Xs - Asl Xl ;

2. The inertial-geocentric inertial transformation is obtained by a
rotation about Xg by the angle of earth's inclination, e:

Z A
%X -a % ! g
1 Tlgig ’
1 0 0 Y
Y
= 3
Alg 0 Ce Se . g (13)
0 S C ©
-oe 5] X =X
g1

3. The geocentric inertial-equatorial transformation is obtained by a
rotation about Zg by the angle of nodal regression, Q :
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4. The equatorial-orbital transformation is obtained by a rotation about

Xe by the angle of orbital inclination, ¢ :

Z VA
o e
X =A X :
e eo o
1 0 0 Y,
= - Y
Aeo 0 Ct St . e (15)
L
0 SL CtL X =X
e [¢]

5. The orbital-local vertical transformation is obtained by a rotation
about Zo by the orbit position angle, ¢ :

Y Y
~ ~ P\ 0
Xo = Bop Xp ’ \ ORBITAL
PLANE
\ —~X
Co -S¢ 0 - P
— XO
A = |s C 0 16
op @ @ 0 (16)
0 0 i 7 =7
op

The individual transformations are combined to produce the transfor-
mation from local vertical to solar coordinates:

X =A X X = A* X (17)
s spp p sp”s
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where
A =A A A A A
sp sl lg ge eo op
and the superscript * represents the transposition of the matrix.

The elements of Asp are obtained by substituting for the individual

transformations and performing the indicated matrical multiplications in the
order indicated. The result is

Ay Ag Az

Asp = A21 A22 A23 ( 18)

Az Ag Ags
; D —

where the directional cosines are

Ay = Co(CACQ +SASQCe) + SeCL(-CASQ + SACQCe)
+ S¢SL(SASe) ,
Ajg = =S@(CACQ +SA8QCe) + CoCL(-CASQ + SACQCe)
+ Co¢ St(SASe) )
A3 = ~SL(-CASQ + SACQCe) + Cr(SASe) (19)
Ay = Co (-SACQ + CASQCe) + S CL(SASQ + CACQCe)
+ Se St(CaSe) .
Ay = =8¢ (-SACQ + CASRCe) + Cop CL(SASQ + CACQCe)

+ Co Si(CASe) s
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Ays = - SL(SASQ + CACQCe) + Ci(CaSe) ,

Agi = Cp (-SQSe) + SpCL(-CQ8Se) + S¢Sc(Ce) .
(19)
(cont'd)
Agp = Sp (S2Se) + CoCL(-CQ28Se) + CepSi(Ce) ,
Ag = CQ(Si8e) + CiCe

The directional cosines, as derived, are functions of five physically
meaningful angles of which: (1) two are constant, the equatorial to ecliptic
plane angle (e) and, once specified, the orbital inclination angle (.) ;

(2) two vary slowly with time, the seasonal position of the earth as it rotates
about the sun at about one degree per day is given by the angle A and the
orbital precession (nodal regression) angle () with a rate of about five
degrees per day depending on the orbital inclination and altitude; and (3) one
varies rapidly with time, the orbital angle ¢ which specifies the position of
the satellite in orbit and varies at the orbital rate, W _ . These angles and
their angular rates are given in Table I. ©

In examination of the directional cosines, it becomes evident that they
are quasi-cyclic functions of the three time varying angles A, Q, and ¢ . It
is also evident that for one year or longer time periods the directional cosines
will take on all their possible values; hence, the time-of-day, time-of-year,
launch location and the initial values of Ajand Q, are not significant factors
in evaluating the energy requirements to overcome gravity gradient effects.
The variation of the gravity gradient is primarily due to the change in the
directional cosines for a fixed vehicle orientation. However, for short time
periods, on the order of a few orbits, the variation in A and Q is small
enough that for practical considerations they may be treated as constants
which have been selected to produce worst case conditions. One such selec-
tion is A =Ag = 270 degrees for the time of winter solstice and Q = Qg =180
degrees for the maximum angle condition between the orbital and ecliptic planes
at the winter solstice.

Substitution of A = 270 degrees and Q =180 degrees into the direc-

tional cosines produces the following simplified directional cosines which are
only valid for short time periods near the time of winter solstice:
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TABLE I. ANGLE LIMITS AND RATES

¢ = Wot (rad) ; t (sec)
Y
W = (GM/RS) 2 (rad/sec)
A = cos(a_ ) , m and n=1,2,3
mn mn

e = 23.45 (deg)

0 = ¢ = 180 (deg)
Q = Q + Qt' (deg)
0 = Qy = 360 (deg)

7
Q = —9.9728(]F~te/R0)/2 cost (deg/day)

t' = time in days
A = A + At' (deg)
0 = A = 360 (deg)

A = 0.98565 (deg/day)

SpC(L+e) = SpCy ,

CpC(L+e) = CpCy s

22

-S(t+e) = -8y s
(20)
-Cp = -Co ,
+8¢p = So s
0 =20



&
it

SpS(L+e) =SSy

&
it

CoS(L +e) = CopSyp
(20)

and (cont'd)

Ags C(Lt +e) = Cy

it

In this simplified form, the directional cosines are functions of only
one time varying angle (¢) , one specified angular parameter (i) and one
constant angle (e) , and can easily be evaluated without resorting to elaborate
computer routines or facilities. However, the gravity gradient ftorques and
the energy requirements to counteract these torques represent worst case
conditions when calculations are based on use of the simplified directional
cosines with ¢ = .+ e = 45 degrees . Hence, the simplifying conditions can
be utilized during preliminary design work to establish maximum fuel reserves
and control requirements for an OWS being acted upon by gravitational torques.

At this point, the transformation between local vertical and solar coor-
dinates has been established for both the general case and the simplified fixed
time-of-year case. The task remains, however, to relate the OWS body axes
to a desired reference frame. As pointed out in the section on coordinate
systems, the reference frame is mission dependent. Therefore, for each OWS
operational mode or for each configuration, a desired reference frame must be
selected, and a transformation derived which relates the body axes to the
reference axes. Then the components of the local radius vector, R0 , must

be obtained in body coordinates through use of the derived transformations.
These components are substituted into the gravity gradient torque equations
and the gravity gradient effects evaluated for each configuration or operational
mode. For example, an OWS with rigidly attached ATM must have the refer-
ence axes solar oriented during ATM operation to view the sun and to receive
the maximum solar energy without gimbals on the solar panels. Under ideal
control conditions the body axes are identically aligned with the reference axes
and for the example above, the simplified directional cosines can be used to
evaluate the gravity gradient torques without additional transformations.
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END VIEW ATM, SOLAR MODE

The DWS with end view ATM, as illustrated in Figure 7, has the ATM
fixed and viewing in the negative Xb—axis direction. Hence, in an ATM mode

of operation the positive longitudinal body axis must be pointing opposite the
sun line vector, XS . This pointing requirement, however, does not place

any constraints on either the Yb - or Zb - axis. Hence, the solar axes can be
related to the body axes by a 180-degree rotation about either the ZS— or the
Ys -axis . Assuming initial alignment of the body and solar axes, a 180~degree

rotation is made about the Zs-axis to produce the desired solar orientation:

Xb Abs Xs (21)
ORBITAL
z,=1, Z,=1, PLANE
®
WO A Zb = ZS

ECLIPTIC PLANE

FIGURE 7. END VIEW ATM, SOLAR FIXED ORIENTATION
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where

-1 0 0
Abs = 0 -1 0
0 0 1

Combining this transformation with the local vertical to solar trans-
formation, equation (16), gives

~

Xy = As A Xp (22)

Ay -Aqy -Aq3

b ~Agy =Agy -Ag3 Xp

Agy Az Ass

P
It

The above transformation is utilized to obtain the vector components of
the radius vector in body coordinates:

'IEO - R i
Eo = R (-Ayi - Ayj + Ayk)
and thus
R_=-R Ay ,
R, = -R Ay (23)
R = R Ay
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Substitution of RX, Ry’ and RZ into the gravity gradient forque equa-

tion, (10), with the products of inertia being zero, gives

_3“
T = —E@1 -1)A,A
RO 7 y 21 £31

- A,y A
ZCX 21 31 )

- 3“
T —R—g_(IX = IZ)AH A31 = = ZCyAii A31 N (24)

o

il

and

T
Z

Il

%(Iy “L) Ay Ay = 2C Ay Ay s

where the directional cosines (A's) are as defined in the section on trans-
formations, equation (18). For a simplified analysis at the time of winter
soltice, the torque equations are evaluated with Ay = 270 degrees and

Qo = 180 degrees substituted into the directional cosines, equations (20). The
following simplified equations may be utilized to obtain the gravity gradient

torque effects on the OWS with end view ATM without resorting to computational
facilities:

Ay = S¢Cy
Ay = -Co (25)
Az = SoSYP

and hence,

TX = CXSZ(pSz/) s
T = -C S%pS2 , 26
v y @S2y (26)

T, = -C_S2¢Cy

An indication of the energy requirements necessary to counteract the
gravitational torques on the OWS with end view ATM in solar orientation is
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obtained by integrating the torque equations with ¢ given as a function of time
and with the angle ¥ being constant. The resultant momentum vector compo-
nents are

H = (-C/2W )C2p8p + H_
H = (-C_/4W )(2¢ - S2¢)S20 + H , 27
g = (-C/4W ) (20 -S2¢)S2¢ + H_ (27)
H = (C/2W)C2Cy + H .

Two cases of momentum accumulation may be entertained: (1) the
constants of integration can be evaluated by assuming the initial values of
momentum are zero, and/or (2) the constants of integration can be assumed
to be zero, in which case the initial momentum values are not necessarily zero.
These cases are evaluated in the section on energy requirements.

Some of the pertinent features of the solar oriented OWS with end view
ATM are:

i. The ATM is rigidly attached to the workshop and is not gimbaled..
The end of the OWS is always exposed to the sun.

2. Solar panels are perpendicular to the ATM viewing axis and once
deployed are not gimbaled. Maximum solar energy is'‘received.

3. The vehicle must continuously pitch, yaw, and roll with respect to
the local vertical to maintain its fixed solar orientation. Hence maximum
gravity gradient torques are encountered. A secular momentum component
occurs about the y-axis where the difference in vehicle inertias is greatest.

4. Torques are maximized at y =45 degrees which corresponds to
an orbital inclination of 21, 55 degrees. The X- and Z-axis torques are cyclic

with a period one-half that of the orbit.

5. At % = 90 degrees the OWS is at an unstable equilibrium point for
a symmetric vehicle{the torques are all zero).
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SIDE VIEW ATM, XOP MODE

The side view ATM Workshop configuration B-1 (Fig. 8) must have

the negative Zb-axis pointing toward the sun and the Yb—axis perpendicular

to the sun line to preclude articulating the solar panels and to maximize the
solar power received. It is also desirable to minimize the momentum required
to maintain attitude hold while viewing the sun. One method of minimizing the
momentum while satisfying the solar pointing requirements is to align the long-
itudinal body axis, X, in the orbital plane (XOP mode). Hence, the problem

at hand is to relate the body axes to a known coordinate system while satisfying
these constraints. It is assumed that the body axes are not misaligned from
their desired orientation; therefore, the reference axes are identical to the
body axes.

Before the operations defining the body-reference coordinates are
carried out, a common vector space must be chosen in which to perform the

ORBITAL
PLANE

ECLIPTIC
PLANE

FIGURE 8. SIDE VIEW ATM, SEMISOLAR FIXED ORIENTATION, XOP MODE

(Xb—axis in orbital plane and Zb—axis opposite sunline)
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necessary vector operations. Since one axis is solar oriented, solar coor-
dinates are selected’. The vectors in local vertical coordinates are trans-
formed into the solar coordinates by the previously defined directional cosine
matrix relating the orbital, equatorial, and ecliptic planes. As previously
shown in equations (17) and (18) the unit vectors in local vertical coordinates
are

ip = A11 iS -+ A21 jS + A31 kS N

C o= A . A .

i i, + Api, + Apky , (28)
and

kp = A13 ls + A23 ]S + A33 kS ,

when expressed as functions of solar coordinates. Now, the body-reference
axes may be defined to satisfy the workshop orientation requirements.

Aligning Z. with the negative sun line vector requires that

b

k = -i (29)

Aligning X, in the orbital plane requires that X, be expressed as a

b b
linear combination of ip and jp which define the orbital planed, Orbital

plane alignment requires that Xb

to Zb . Hence, Xb can be expressed as the cross product between the unit

vectors k and i
p ]

be perpendicular to kp and, by definition,

X, = ~ () % (kp) (30)

2. Since one axis is to be in the orbital plane either orbital or local vertical
coordinates could have been selected as a basis for body axes definition; how=-
ever, the end result is the same, although the transformation matrices would
have been different.

3. Note that the sign of Xb is not uniquely determined. Interchanging the

cross product defining X, would have resulted in a sign change in X, . Such

b b
a sign change could alter the conditions under which control moment gyros
would physically saturate.
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and

-l x k)
b~ (is) x (kp)‘l :

Transforming k into solar coordinates and carrying out the indicated
operations: P

X, = -y x (kp) = Agj, - Amk (31)
and
. A . A
b T 2 332 7, s T 2 232 1/zks
(Agg + Ajz) (Agz + Ajgz)
The third reference coordinate Yb is obtained by taking the cross
product between the unit vectors directed along Xb and Zb to complete a
1
right-hand triad: Letting D = (A323+A223)/2 ,
) A A
. _ s _ s __3_3_. - __2_3_
b = () x () = (IS)X( D s Dks>
A A
- - 2223, L 2B
T "D s D Ky (32)

In vector matrix notation the transformation from solar to body coor-
dinates for the side view ATM [equations (29), (31), and (32)] is

Xb = Cbs XS , (33)
where
0 _éﬁ.a. - AZB.
D D
A A
_ = 2223 - 2233
Cbs a 0 D D
-1 0 0
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The body system is then related to the local vertical system by

~ ~ ~

Xy, = Cog Xy = CpgAgp Xy = By X, , (34)
where
By By B3 Ayq Aqp Aygz
Bbp = | By By Bys ; Asp = 1Ay Agy Ags .
By Bsy Bgs Az;  Agp Ags

Utilizing equation (34), the vector from the earth's center to the
spacecraft in body coordinates is

R = RByi

o + ROB21 ]b + ROB31k = R i .

b b op

Evaluating the components of Eo gives

R
X A A
7 - Bu = “ﬁBAM - —ﬁzaAsi ,
(6]
R
A A
[0]
RZ
—_— — Bay = -
R 31 Aygy
[¢]

where

2
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and the directional cosines are as previously defined in the section on trans-
formations, equations (19).

Substituting the components of Eo into the gravity gradient torque

equation (10) with the products of inertia zero gives

=
H

3u
F(IZ - Iy) B21 B31 = ZCX B21 B31 s
o)

-
[

3u
-I1)By B = 2C B B s
'—3'R0 (IX _,z) 11 B3y y Bt Bs1 (36)

and

3u
? (Iy = IX) Bn B21 = 2CZ Bn B21

o]

-
I

as the general gravity gradient torque components in the selected body-reference
coordinate system. Notice that the an’s are given in terms of five angles,

three of which vary with time. However, valid results can be obtained by
assuming conditions which eliminate two of the time-varying angles.

For a simplified, fixed time-of-year analysis substitute A = 270 degrees
for the time of winter solstice and £ = 180 degrees for the maximum angle
between the ecliptic and orbit planes intc the transformation components. The

result is summarized in equation (20) and the elements of Bbp become

1
2 2
D = (Ag + Aza)/2 =Cy

By = -Co ,
(37)
B21 = 'S‘PSZI) 3
and
B3 = -S¢Cy
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When these simplified directional cosines, equation (37), are substituted
into equation (36),

— 2
TX = CXS(pSZlIJ ,
T =C S2¢pCy ,
and
TZ = CZ S2¢ Sy

These equations contain only one time varying angle which is known as
a function of the orbital angular rate, i.e., ¢ = Wot . Integrating with respect

to time gives the following momentum components due to gravity gradient
torques:

HX = (CX/4WO)(2¢ -82¢p)82¢ + HXO
H = (-C /2W )C20Cy¥ + H

and
HZ = (—CZ/ZWO)C2<pSzp + Hzo

Meaningful results about the effects of gravity gradient torques on the workshop
and the energy requirements to maintain attitude hold can be obtained from the
simplified torque and momentum equations. However, long period cyclic effects
due to regression of nodes or the earth's rotation about the sun can only be
evaluated by using torque equations as a function of three time-varying angles.

Some of the pertinent features of the side view ATM with the long body

axis in the orbital plane are illustrated in Figure 8 and the characteristics of
such an orientation are: ‘
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1. The side view ATM is not gimbaled.

2. The solar panels are not gimbaled, nor are they ever shaded by the
ATM. Hence maximum solar energy is received.

3. The vehicle must continuously pitch and/or yaw at the orbital
regression rate (about 6 degrees/day) and roll at the solar look angle rate
(about 3.5 degrees/day) .

4. With respect to the local vertical, the vehicle pitches and/or yaws
continuously at the orbital rate, Wo . Thus, the torques about the Y- and

Z-axis are cyclic, peaking at their maximum possible values twice each orbit.

5. The same side of the vehicle is always exposed to the sun, a factor
to consider in designing the environmental control system.

6. The X-axis torque is secular, but the moment coefficient is mini~
mum for a near symmetric vehicle.

7. The axés are orientated so that the axis of minimum inertia, Xb ,

is always in the orbital plane, the axis of maximum inertia, Zb , 1s opposite
the sun line vector, and the axis of intermediate inertia is perpendicular to the

sun line vector. Such a semi-solar fixed orientation minimizes the energy
required for solar attitude hold.

PERPENDICULAR TO ORBIT PLANE MODE

The reference coordinates for the OWS in a perpendicular to orbit
plane (POP) mode are chosen so that only one degree of freedom is required
for sun tracking on the gimbals of either the ATM or solar panels. The gimbal
limitation requires an OWS configuration similar to Saturn V Workshop

configuration B-1, but with a side view ATM that gimbals in the Xb and Zb

plane. The operational ATM would be aligned in the general negative Z

b
direction and point toward the sun. Hence the Zb—axis must lie in the plane
defined by the sun line and the perpendicular to orbit vectors, and the Yb—axis
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must be perpendicular to the plane so that maximum solar energy can be
received. In a POP mode orientation, the longitudinal body axis, Xb , is by

definition perpendicular to the orbit plane and is, therefore, perpendicular to
the local radius vector from the earth's center to the OWS, aligned with the
orbital momentum vector.

The OWS in POP mode orientation is in an unstable equilibrium position.
The gravity gradient torques for a symmetric vehicle would normally be zero
without axes misalignment. It has been assumed, however, that the OWS will’
continuously roll to limit ATM gimbal requirements. The torque about the
X-axis will not be zero unless the vehicle is symmetric, so that the products
of inertia of the Y- and Z-axis are equal. With axes misalignment, or under
the influence of inflight perturbations, the gravity gradient torques tend to
destabilize the POP mode oriented OWS. The torque components will be derived
in general form and in simplified form using fixed time of year assumptions.
The simplified form equations will then be integrated to give an indication of the
energy requirements for attitude hold under the influence of gravity.

Figure 9 indicates the pertinent features of an OWS in POP mode orien-
tation. To view the sun, the OWS must continuously roll at the orbital angular
rate with respect to the local vertical, and the ATM and solar panels must be
slowly gimbaled due to orbital plane regression and seasonal changes in the
sun's perpendicular rays upon the earth. The gimbal rate is about 3.5 degrees
per day which is the time rate of change in the solar angle B as defined in the
section entitled Solar Look Angles. Since the OWS is aligned with the orbital
plane and the radius vector from earth to spacecraft, the local vertical coor-
dinates are selected as the system in which to define the reference coordinates.

Since Xb must be perpendicular to the orbital plane and hence the
Xp—axis, let

Xb = Zp so that L = kp . (40)

The Yb—axis must be perpendicular to Xb and also to the sun line

vector XS so that only one degree of freedom is required to maintain the solar
panels directed toward the sun. Hence, Yb is perpendicular to the plane
and XS . A unit vector in the direction? of Y, is defined

determined by X b

b
by the vector cross product,

4, The éign of jb is not uniquely determined
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L U (i)
b (kp) X (1S)

(41)

where is in local vertical coordinates is given in terms of previously defined

directional cosines, equations (17), as

i = Ayl + Api + Ak
s np 1zJp 13p

1
Performing the indicated vector operations and letting E = ( A 121 + Afz)/z gives

A A
Ly V2 k8
Tp E p T E b (42)
The third reference coordinate, Zb , 1is defined by completing a right-
hand triad, hence
A A
- - - i1y 212
kb = 1b>< iy, E lp B ]p (43)

Arranging equations (40), (42), and (43) in vector-matrix form, the
transformation from reference coordinates (unperturbed body axes) to the local
vertical system is given by

0 0 1
I S} Ay
X, = = = 0| X, (44)
_ Ay . Ap 0
T E E

The components of the orbital radius vector are determined by utilizing
equation (44),

= A A
= i = - =y - =
Ro Ro 1p Ro( E b E kb) (45)
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Hence,

R =20 s
X
R =-R<A12> ,
y o\ E
and
A

- - 21

Rz Ro(E)

Substitution of equation (45) into the gravity gradient torque equation
{10), where the products of inertia are zero, gives the POP mode torque
equations

B 2 2
T, = 2C Ay A12/<A11 + A12>
T =0 ,
Y (46)
and
T =0
z
Using the simplified directional cosine values listed in equation (20)
gives Ay =S¢@C¢¥ and Ay =CeCy¥, so that equations (46) become
Tx = Cx S(2¢) s
T =0
y (47)
and
T =0 .
Z
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Integrating equations (47) with respect to time gives the momentum,
i.e., ¢ = Wot , dt = dgo/Wo , components,

H = (— CX/ZWO)C(2<p) R :
H =H ,
y yo (48)
and
H =H
Z Zz0

If the OWS is symmetric, the moments of inertia IZ and Iy are identical

so that the torque and momentum about the X-axis is also zero. Hence, a
symmetric vehicle in the POP mode orientation is at an unstable equilibrium
position with the torques about all axes being zero. Any perturbation or axes
misalignment tends to force the vehicle from this orientation, which will be
further analyzed in the next section, Body Axes Misalignment.

The factors which were pertinent in selecting the POP mode reference
coordinates (Fig. 9) and the characteristics of an OWS in such an orientation
are listed below:

i. By continuously rolling about the Xb—axis with respect to the local

vertical (360 degrees per orbit) only one degree of gimbal freedom is required
on both the ATM and solar panels to track the sun.

2. By performing a 180-degree turn about the Zb—axis each time the

orbital and ecliptic planes coincide (about 30-day intervals), the gimbal limits
on the ATM and solar panels can be further restricted to 16.5 degrees to 90
degrees on the ATM and 0 degree to 73.5 degrees on the solar panels for an
orbital inclination of 50 degrees. Such a manuever would also prevent shadow-
ing of the ATM by the workshop.

3. Since the vehicle is in an unstable equilibrium position, the effects
of gravity gradient torques and the energy requirements are minimized.

4. Because the vehicle is broadside to its velocity vector, the aero-
dynamic torques will be maximized.
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5. The vehicle inertial properties will continuously change as the ATM
is gimbaled.

6. Body axes misalignment from either the reference coordinates or the
principal axes cause a large increase in the energy requirements due to increased
gravity gradient torque effects.

7. Gimbal angle control and command for both the ATM and solar panels
could come from the same source.

BODY AXES MISALIGNMENT

Two cases of body axes misalignment will be entertained: Case i, body
axes misaligned from the principal axes in which case the products of inertia
are not zero by definition of such a misalignment; Case 2, body axes misaligned
from the reference axes where to simplify the necessary mathematical manipu-
lations the products of inertia are assumed to be zero. In each case the same
coordinate transformation is utilized, but the Euler angle symbols are different
to avoid possible confusion between the two cases. Both cases, however, have
similar first order effects on torque and momentum. Finally, the gravity
gradient forques due to axes misalignment are calculated for a satellite in a
gravity gradient stable mode, as well as for the POP mode case.

Case 1

Assuming that the body axes are misaligned from the principal axes
requires development of an inertia dyadic transformation to relate the moments
and products of inertia of the body axes to the moments of inertia of the princi-
pal axes in which the products of inertia are zero. This operation will give
equations by which the products of inertia can be eliminated from the gravity
gradient torque equations and the torque expressed as a function of the mis-
alignment angles and the moments of inertia which are known in the principal
axes system. First, the transformation from body to principal axes will be
defined; then the tensor transformation will be derived. Finally, the gravity
gradient torque equations will be evaluated and the momentum equations obtained
by integration of the torque equations. Since the misalignment angles are-
assumed to be small, small angle approximations and linearization by neglect-
ing second and higher order terms are utilized for simplification.
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The transformation from principal axis (denoted by the subscript, a)
to body axis is obtained through a modified Euler, type 3-2-1, transformation.
Initially, the axes are assumed to be aligned. First rotate about Z1 by the

angle o , then about the transformed Y'-axis by the angle «_and finally
z y

about the twice-transformed X'"-axis by the angle @ to obtain

1 @ 0 \
X' = Agx_ , Ay = a1 0],
0 0 i
X X!
- \
[1 0 -a \
y
\ /Z"
X" = AyX' , A, =1f0 1 o |, \ - b
- y YAl
o 0 1 /
L. y . Yi=Y"
X
oy b 1"
[0 0 0 \\ Z
~ ~ \ Y,
= Ax" , A; =|0 1 o . \ -
AR A x =0y,
0 o 1 i /
L XH:Xb
Combining the three rotational matrices gives
;b = AX" = A1A2A3ia = Aba')”ca (49)
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where

1 o -
Z y
Aba = —az i ozX (50)
o - 1
y X
and
X" Abaxb

The inertia dyadic transformation is derived from basic principles by
starting with the angular momentum of a body composed of a system of particles
about the center of mass,

H = ), (F) x (mi) (51)

where

r. = X,i + z. k
1 1

p " Vi i “b

is a vector to the ith mass particle expressed in body coordinates. The
velocity ?1 can be expressed in the rotating body frame as

r.o= T+ WXT, (52)

-

where

w = wxlb + wab + wzkb

is the angular velocity of the body axes relative to inertial space expressed in

body coordinates, and ?bi is the velocity of the mass relative to the body
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coordinates. Substituting equation (52) into the expression for angular momen-
tum, equation (51), and expanding gives

Z[(;-i)x mi(i-bi v T % 7‘1)]

and (53a)

H

H

I
o
B
]
.
X
2]
o
S
+
g
B
-
Rl
—_
X
AN
e
X
=]
-
SN—
| EE———

The first term represents the relative angular momentum of the ith mass
particle with respect to the body axes. Physically, the first term is due to
moving parts such as flywheels or control moment gyros, but for a rigid body
r, is fixed with respect to the body axis; hence, the first term is zero for this

derivation. The second term is a vector triple product which can be expanded
to produce,

R [ R 1 o

Carrying out the indicated vector operations and substituting the previously
defined moment and product of inertia terms, equation (8):

E:(Iw—lw—lw>i+(—1w+1w-Iw)j
XX X Xy ¥ xz z/b yX X VY ¥y yz z/)°b
+(—Iw-1w+1 w)k . (54)

ZX X zy 'y zz z) b

The angular momentum can be written in a more compact form-by using
vector-matrix notation:

H=1w (55)

where
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puntd

= col(H, H, H)
X'y Tz

5 = COl(w s W_, W ) ’
X' Ty z
and

I -1 -1
XX Xy XZ

T= | I 1
yX yy yz

-1 -1 I
zZX zy zZz

The square matrix I is called the inertia matrix of a body. The prop-
erties of its elements under a coordinate transformation are such that they
qualify as a second order tensor. Hence, the inertia matrix is also called the
inertia tensor of a body. As derived, the equation for H is valid for any rigid
body with an arbitrary reference point on the body which serves as origin for
the body axes. For the case at hand, assume that the body axes are not prin-
cipal axes, the elements of I are unknown, and the products of inertia are not
necessarily zero. Further assume that the moments of inertia are known in

principal coordinates where, by definition, the products are zero for such a
reference frame.

As previously derived, the transformation between body and principal

axes, equation (49), is given by

~ . ~F ~) _ * ~
xb = Aba Xa and xa = A axb

Therefore, the angular momentum can be transformed into the principal
coordinated by

us
i
b

~ _ >l,< ~ * ~J ~
Ha = Aba baI W . (56)
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But in principal coordinates the angular momentum is

H =13 =L AYG (57)

By equating coefficients, equations (56) and (57),

* 7 - T sk
Aba I = Ia Aba (58)
so that
T = A, Ta A];“ (59)

is the tensor transformation between the inertia dyadics.

In principal coordinates the elements of Ia are known such that

1 0 0
X
I =|0 Iy 0 (60)
0 0 I
| Z_

Substituting into the tensor transformation, carrying out the matric  multipli-
cations and equating elements produces nine equations from which the moments
and products of inertia in body axes are determined:

I - a ] [ - , -
< y Ixz 1 ”Z (Yy Ix 0 4] ri az ay
-1 I -1 - - -
vx vy vz | -« , 1 (Yx [§] Iy 0 4] 2 i ax
L R | I - -
Tlox zy 27 ¥ y @ 1 0 0 IZ ozy ax 1
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and

1=
Therefore
I
XX
1
yy
and
1
77

1

X
aZ(Iy - IX)
ay(Ix - IZ)
Ix 5 IXy
Iy ? IXz
Iz s Iyz

az(Iy

aX(IZ

I

zy

Il

1l

- IX)

- aX(IZ - Iy)

(61)

The equations above are substituted into the gravity gradient torque equation

(10) to eliminate the product of inertia terms:

3u/R g{(IZ - Iy){Rsz - aX(R
+ (Ix - IZ>

3u/R? {(IX - IZ)[RZRX - ay(R; - R;)] - (IZ - Iy)
(- IX)QZRZRy} ,

and
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y

y

)] B (Iy ) IX)
W

a R R

Z Z X

(62a)

a R R
X Xy



T = 3u/RS 2(1 -I)[RR - (RZ—RZ)] - (1 —I)aRR
z o \y /| XYy Z\'y X X z)Jyyz

+ (IZ -1 )ozXRXRZg
y (62a)
. (cont'd)

By utilizing definitions, equations (11), the body-principal axes misalignment
torque equations can be written as

~
!

_Z/Rzgc [RR - o (RZ—RZ)] -CaRR +CaRR% ,
o) x|y z x\z 'y zZ z 7 X yYYy X

=
1

2/3220[33 —a(Rz-Rz)] -CaRR +'CaRR§
y o)yl z x y\ X ./ X X Xy z z z y\ ,

and

T :2/3230 [RR -a(RZ-R2>] -CaRR +CaRR$ ;
o) zI'xy “z\'y "x YV Y z X X X z{ -

(62b)

These equations can be utilized to evaluate the effects of body and principal
axes misalignment for any vehicle orientation. For each specific vehicle
orientation the components of the local radius vector (RX, R , and RZ) must

be obtained in body coordinates through use of the previously defined directional
cosines. The misalignment angles (ozX, ay, and az) are free parameters

whose values are small (equal or less than 15 degrees); hence,second and
higher order misalignment terms have been deleted in deriving equation (62).

The radius vector components for three OWS attitude hold modes are
listed in Table II as functions of directional cosines whose values are given in
equations (19) on transformations. However, the directional cosines are
quasi-cyclic functions of three time varying angles and are not suitable for
hand calculations. Valid trends can be obtained for a few orbital periods by
using a fixed time-of-year analysis and by neglecting orbital regression. The
. radius vector components at the time-of-winter solstice (A= 270 degrees) with
maximum angle between the orbit and ecliptic planes ( = 180 degrees) are
listed in Table III. .Using these simplified components the POP mode gravity
gradient torque equations with body-principal axes misalignment are
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TABLE II. RADIUS VECTOR COMPONENTS FOR THREE OWS MODES

AS FUNCTIONS OF DIRECTIONAL COSINES

RX Ry RZ
R (-Agshg + AgsAy) R (Agsfgy + Agyhiz)
SIDE - .7 - 7 -R Ay
(Ags + Agg)’? (Agg + Ay "2
END - ROA 11 - ROA21 ROA31
- R A12 - R A“
POP 0 . 0 = - 0 —,
(Afy + Af)"? (Ayy + Agp) 2
TABLE IlI. SIMPLIFIED RADIUS VECTOR COMPONENTS
WITH A =270 DEGREES AND Q = 180 DEGREES
RX Ry RZ
SIDE - ROCcp ROSgo Sy ROSgo Cy
END ROS(p Cy RngD ROSgo Sy
POP 0 - RoCcp - ROSgo
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, :
CyzayS(p + CZaZSZ¢
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and

- - 2 -
TZ = szazc @ CyozyS2<p (63)
(cont'd)

The POP mode torque, equations (63), can be integrated to give

HX = (CX/ZWO)(—Cch +2aX52¢)) + on ,
Hy = (ayCy/ZWo)(Z(p -82¢) = (azCZ/ZWO)CfZgo + H ,
(64)
and
Hz = —(aZCZ/ZWO)(Zgo +82¢) + (ayCy/ZWO)CZq) + HZO

where H0 are the constants of integration.

The simplified gravity gradient torque and momentum equations for the
side and end view configurations under body-principal axes misalignment can
be obtained by substitution of the simplified radius vector components for each
configuration. However, the equations are more complex and difficult to
integrate than those for the POP mode case.

Case 2

Assuming that the body axes are misaligned from the reference axes
also requires use of the modified Euler transformation developed for Case 1
where the angle symbols have been changed. The body axes are carried into
the reference axes by first rolling about the Xb—axis by the angle 5X , then
by pitching about the transformed Yb-axis by the angle éy , and finally by

yawing about the twice transformed Z, -axis by the angle <‘SZ . The resultant

b

transformation using small angle approximations and linearization is resum-
marized by

X, = A X (65)
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where

i -0 )
Z y
Abr = (SZ 1 -GX .
-0 ) 1
y X

In the previous sections where specific vehicle orientations were
evaluated, the body axes were assumed to be ideally aligned with the reference
axes. In the present case the body-reference axes are assumed to be misaligned
and the transformation is utilized as an operator on the RX, R , -and RZ

components which are assumed to be obtainable in the reference frame. Let

Xb s Yb , and Zb be the local radius vector components as used in the gravity

gradient torque equations:

X,

il

R - 0R + 6R
X zZy y z

Y =68R_+ R, - OR, (66)

and
Z. = -60R + 6R + R
y X X'y A

Assuming that the products of inertia are zero,the gravity gradient torque

equation ( 10) , for body — reference axes misalignment using equations (66)
are

-
!

—(2/R2>C [RR-é(RZ-R2>+6RR —6RR] :
x o) x'yz x\"z Ty zZ 7z X y VX
(67)

T =(2/R2>C[RR—6(R2-R2)+ 5 R R -aRR] ,
y o)yl zx y\x Tz X Xy zZ zZy
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and

T = (2/R}cC [RR -6 (R2-R» + 6RR - 0RR (67)
Z o zL X'y zy X VY % X X zZ
(cont'd)

where second order misalignment terms are dropped.

These body-reference equations are very similar to the body-principal
axes misalignment equations. With the aid of CX + Cy + CZ =0, equations

(62) can be rewritten so that the components of equations (67) appear as terms.
However, two additional terms are also produced that represent cross coupling
between each axis for the body-principal misalignment case. For a vehicle that
is near symmetric about one axis,the cross coupling terms are zero for several
selected orientations. In particular the gravity gradient stable mode in which
case the body-reference and body-principal axes misalignment equations are
identical, as will be shown, and the POP mode for a symmetric vehicle.

For a nonsymmetric vehicle the POP mode radius vector components
from Table III are substituted into equations (67) to produce

= )
TX CX(SZq) + 2 XCZgo)
T = C (26 8% - 6 S2¢) ,
and
_ _ 2
TZ = CZ( 26ZC ¢ + 6ySng)
The similarity between equations (68) and (63) can readily be seen.
For a symmetric vehicle CX =0 and Cy = - CZ in which case equations (68)

and (63) are identical. Hence for a symmetric vehicle in POP mode orientation
the effect of body-principal and body-reference axes misalignment is identical.

The momentum equations for body-reference axes misalignment are
obtained by integrating equations (68) with respectto ¢ = Wot :
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= - S
Hx (CX/ZWO)( C2¢p + 26X 2¢0) + on
H = (C/2W )[6 (2¢0 - S2 + 6 C2 + H .
y = (C/2W )8 (20 -829) + 0,C20] + H_ -
)
and
HZ = (CZ/ZWO)[—GZ(2¢ +82¢) - 6yC2<p] + HZO

These equations are evaluated using the side view ATM configuration param-
eters and a comparison made between the body-principal and body-reference
misalignment effects in the section on energy requirements.

To further illustrate the similarity of axes misalignment effects due to
body-reference misalignment, consider an OWS in a gravity gradient stable

mode. Let the Xb—axis of minimum inertia be aligned with the local vertical

and the Zb—axis be aligned with the orbital spin vector. A right-hand triad is

completed by the Yb—axis which is aligned with the velocity vector. In this

case the body axes are identically aligned with the local vertical coordinate
system (Xp, Yp, Zp) , and the components of the local vertical vector are

RX = Ro s Ry =0, and RZ = 0 . These values are substituted into the general

gravity gradient torque equation (10) to get

T =0
X
3§
Ty - RO3 e (70)
and
_3“
T = ——3—R0 L

These torques are due only to product of inertia terms and are zero if the body
axes are also principal axes. During Case 1, equations (61), it was shown that
the product of inertia terms could be replaced by principal moments of inertia
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and angular misalignments, that is

IyZ = - aX(IZ - Iy) s

Lz = —ay(Ix_Iz) ’ (71)
and

I =-a (I -1)

yx 2y X

Utilizing these relations, the gravity gradient torque components, equations
(70), become

T =0
X
_3u
Ty —I-{—g_(IX Iz)a = 2C «o (72)
and
_ 3w - -
TZ = _ﬁg(ly Ix)cuZ = ZCZozz

The results are verified by assuming that the body axes are misaligned from
the principal axes by an infinitesimal rotation. The local radius vector com-
ponents are substituted into equations (62) derived for Case 1, producing the
same torque components as given above.

Finally, let the body axes be misaligned from the reference axes.
Utilizing the torque equations (67) developed for body-reference misalignment
(Case 2) and substituting for the components of the local radius vector produces

T =0 ) (73)
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_3u
To= Rr (L -1)8 = -5

y o y
(73)
and (cont'd)
3u
TZ = Eg (Iy IX) Gz = 2C 5Z

These components are the same as those of the previous case, equations
(72), if the od-angles are set equal to the «-angles. Hence, in a gravity
gradient stable mode the effects of body-reference and body-principal misalign-
ments are identical for small angle displacements. The torques due to select-
ing body axes that are not principal axes are also identical to those produced
by axes misalignments. The equivalent misalignment angles can be determined
by using equations (61).

SOLAR LOOK ANGLES

Often it is desirable to examine the variation in angles which describe
an object's position with respect to a given coordinate system or the OWS's
body axes. For example if the OWS is in POP mode orientation it is necessary
to examine the angle between the longitudinal body axis and the sun line vector
to determine the angular limits and rates required on the ATM gimbal for sun
tracking. Or, if an onboard experiment can be gimbaled with respect to the
OWS, it is desirable to establish the gimbal angles and angular rates between
the OWS body and experiment reference axes. Such angles are commonly
referred to as "look' angles, which usually represent directional ccsine angles
and can be derived by taking the scalar (dot) product between the vectors
involved. In most cases, the scalar product will be between vectors that are
known in different reference frames, hence the previously defined transforma-
tions can be utilized to obtain the vector components in a common vector space
before performing the necessary vector operations.

The angle, ¥, between the ecliptic and orbital planes can be obtained
by first defining vector perpendiculars to both the planes, and then taking the
dot product between the defined vectors. Let ¢ and 0 be vectors perpendicu-
lar to the ecliptic and orbital planes, respectively. From the previously
defined coordinate systems, c¢ = ks and 0 = ko = kp . Using the directional
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cosine matrix in equations (17) to obtain the components of o in solar coor-
dinates,

(_) = kp = A13 iS + A23 jS + 'A33 kS (74)
Taking the dot product defines
cosy = ¢ » 0 = Agyg = CQSiSe + CiCe ('75)

when using the simplified directional cosines of equations (20) with @ =180
degrees, ¥ = L+e , its maximum possible value which is depicted in Figure 5.

The variation of y as a function of orbital time is shown in Figure 10. Its
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period is about 70 days for an inclination of 50 degrees. This period is the
same as the orbital regression period which rate is shown in Figure 11 as a
function of orbital inclination.
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FIGURE 1{1i. ORBITAL REGRESSION RATE VERSUS INCLINATION

The angle (vy) between the longitudinal body axis (the orbital spin
vector) of the OWS in POP mode orientation and the sun line can be obtained

by first defining the sun line vector s and then dotting § with the Xb—axis

for the POP mode configuration. Using the coordinate systems defined in
equations (28), and directional cosines, s = is , and

Xb = lb = kp = kO = A13:i's + A23js + A33ks

Taking the dot product yields
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cosy = § * ib = Ajg = =-Si(-CA8Q + SACQCe) + CiSASe . (76)

The projection of the sun line vector upon the orbital plane defines an
angle B which is often referred to as the solar look angle. Since any vector
in the orbital plane is always 90 degrees from the perpendicular to the orbital
plane the solar look angle can be expressed as a function of v from the relation
vY=8 + 90 degrees . Substituting this relation for vy gives

cosy = cos(B + 90 degrees) = - sinf (77
Therefore,

B = sin~l(Ayy)
and

B = sin-i[sL(—cxssz + SACQCe) - CLSASe] (78)

The solar look angle is plotted in Figure 12 for a 270-n.mi. orbit at
an inclination of 28 degrees. Over a one-year interval g is repetitive with a
period of about 45 days and an angular rate of about 2.6 degrees per day. The
zero values of B indicate times when the sun is on the line of nodes between
the orbit and ecliptic planes. The intersection of the 8 and E curves repre-
sent times when the sun is on the line of nodes between the orbit and equatorial
planes. The magnitude of 8 is within an envelope determined by the angle
E + ¢+, where E is defined by the projection of the sun line vector upon the
equatorial plane and is indicative of the seasonal time of year.

The angle E + 90 degrees is defined by the dot product between the
sun line vector § and a vector € perpendicular to the equatorial plane. Using
the previously defined transformations, the vectors are obtained in solar
coordinates as

and (79)

1
i

k = SASei_ + CASej + Cek
e s s S

57



1 ' i
T T T R T
1) SUSEURK JPCTIN SR !
.. Orbit [
40 .._~+. ——
. i
H !
= i
& i )
" 2 1 p=26 d'gl'./dl;
- . | -6 degree/day
8 i A I A
A i, S ol £
= 1 - RN . B i |
@ , ¥ - :.~ - . _ 51 SRENESEN 14.\ -::':;.:. - »
o : : R
-] C - O H ,l
<= N i ‘j ot _'.:" T o '!‘: 1 '
3 L h BN E - 28 degree
5 = AR R
2 \ ' Days From Launch
— i 1
40 == 0 45 90
! Winter 1= 28 degrees
1 Soltice A= 270 degrees
RS Rets W i S i} Launch Qq = 180 degrees
40 CEEEEEIE] FORHE FETIOVITES LT EION ol  rerye! it d e e e bl Tty
0 90 180 270 360

Approximate Days From Yernal Equinox { A degres)

FIGURE 12. SOLAR LOOK ANGLE AS A FUNCTION OF
THE EARTH'S INERTIAL POSITION

Taking the scalar product yields

cos{E + 90 degrees) = - sinE = SASe
and (80)

E = sin™!(- SaSe)

The angle E as well as E + ¢ is superimposed on Figure 12 along
with B8 . For the special equatorial orbit case with ¢ = 0 the solar look angle
is identical to E . It is convenient to show plots of 8 and E with time start-
ing at the vernal equinox. However, the actual initial value of g is deter~
mined by both the time of year, specified by Ay, and the time of day of orbital
injection, specified by £, . For B to attain its maximum value at the time of
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winter solstice (A= 270 degrees) requires that ;= 180 degrees. In this
case f(max) = 73.5 degrees for ¢ = 50 degrees as shown in Figure 13,

Yernal Summer Avtumnal
Equinox Soltice
: :4—60duys—>=
80— ;.‘4%. B IR IR " AT SR A R i il } i i
——l :;ttli SEESEURES RESEEREEES SRERE KRGS RSP~ o p- SRREE -
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5 2 1€
°
e .
& 0
=
a
2
2 op €50
-§i [ ';degree
-~ .40
5
3
60
-80

Approximate Days From Winter Soltice Launch With A, = 270 degree And Q, = 180 degree

FIGURE 13. SOLAR LOOK ANGLE AS A FUNCTION OF
TIME AFTER LAUNCH

The solar angle has a period of 60 days and a rate of about 3.3 degrees per
day. Figure 14 represents B for a polar orbit case with (¢ = 90 degrees .
As pointed out in the section on coordinate systems, many authorities specify
the earth's position on the celestial sphere by A + 180 degrees, in which case
a sign change is introduced in both 8 and E .

A rather interesting orbit with respect to the sun line results by select-
ing the orbital inclination such that the orbital regression rate is equal to the
earth's rotational rate about the sun. Such a near polar orbit is called a sun
synchronous orbit. The orbit precesses such that the orbital plane is relatively
constant when referenced to the ecliptic plane; hence,excursions in the solar
look angle are small over an extended period of time. A spacecraft in sun
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FIGURE 14. SOLAR LOOK ANGLE, (= 90 DEGREES

synchronous orbit would have several apparent advantages as minimization of
the energy required to maintain a specified attitude orientation and the hard-
ware required to point various experimental modules as the ATM or an earth
resource module, The earth's rotation of about 15 degrees per hour would
allow total ground coverage from a sun synchronous satellite in about two weeks.

The nodal regression rate plotted in Figure 11 is given by

. 7
Q = -9.9728(R /R ) /2 cos L (degrees per day) (81)
Solving for the orbital inclination and setting Q=i= 0. 98565 degree per day

gives
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1. 0.98565
9. 9728 (Re/Ro)

L = cos” (82)

7,

For an orbital altitude of 270 n.mi., Ro = (Re + 270) n.mi. where

Re = 3444 n.mi. is the earth's radius, the orbital inclination for a sun syn-

chronous orbit is calculated to be 97.2 degrees. At this inclination the orbit
precesses in phase with the earth's movement about the sun. Launch condi-

tions are selected to produce the initial values of €, and A, and hence the
orbit and some relatively constant magnitude for the solar look angle.

The solar look angle for three initial values of ©, is shown in Figure
15 as a function of the earth's position about the sun. Launch at the vernal
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FIGURE 15. SOLAR LOOK ANGLE FOR SUN SYNCHRONOUS ORBIT,

L = 97.2 DEGREES
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equinox with Qj = 0 produces on orbit with dark/light cycles, the orbital plane
contains the sun vector. Utilizing this orbit the OWS with side view ATM could
operate in POP mode and view the sun without requiring gimbals on either the
ATM or on the solar panels, hence minimizing both energy and hardware
requirements. On the other extreme, launch at the vernal eqilinox with

Q, = 90 degrees produces an all-light orbit, the orbit plane is almost perpen-
dicular to the sun vector. An OWS with side view ATM could operate in a gravity
gradient stable mode, an earth resources module could view the earth obtaining
total ground coverage over a few-day period, maximum solar power could be
received and the sun could be observed continuously, all without requiring large
angular degrees’ of freedom or module gimbals. ‘

Additional angles of interest can be derived. However, most look angles
are either mission dependent or dependent upon the mounting of an experiment
with respect to the OWS body axes, in which cases additional transformations
may be necessary to relate the coordinates.

ENERGY REQUIREMENTS

In this section, the energy requirements necessary for attitude hold
against gravity gradient torques are calculated for the previously selected
orientations. The torque and momentum vector components are plotted over
a one-orbit time interval as a function of the orbital angular position. Then the
total momentum, the square root of the sum of the components squared, is
plotted and related to fuel weight and the number of control moment gyros as
defined for use on the ATM. For quick fuel weight estimations graphical
methods are suggested for relating angular misalignments from the local
vertical to momentum and momentum to fuel weight. Since much of the analysis
contained in this report was done to support the "Early Saturn V Workshop"
study conducted by MSFC May 15, 1968, the spacecraft vehicle data are taken to
reflect the OWS-B physical parameters and orbital data. A representative pic-
ture of OWS-B is shown in Figure 16 with the side view ATM. The end view
ATM configuration is obtained by rotating the ATM 90 degrees about the Y-axis
such that the ATM points in negative X-axis direction instead of along the
negative Z-axis.

The vehicle data shown in Table IV were obtained from a memo dated

January 9, 1968, R-P&VE-AAD, "Saturn V Workshop — Configuration
B-1." The numerical values shown are for a dry launch workshop with light
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TABLE IV. VEHICLE PARAMETERS, OWS CONF, B

Parameter Side ATM End ATM Units
L 0.6514 x 108 0.5396 x 108 kg-m?
Iy 6.1729 x 108 6.2194 x 108 kg-m?
L 6.3400 % 108 6.3418 x 108 kg-m?
I - Iy 0.1671 x 108 0.1224 x 108 kg-m?
I -1 ~5.6886 x 10° -5.8022 x 108 kg-m?
Iy -L 5.5215 x 108 5.6798 kg-m?
m 53 513 53 513 kg
3/2 w; 1.8382x 1078 1.8382x 1076 sec™?
C, .0.3072 0.2250 N-m
cy -10. 4568 -10.6656 N-m
C, 10.1496 10. 4406 N-m
Cx/2wo 138.8 101.6 N-m-s
Cy/ZW0 -4723.0 -4817.8 N-m-s
C,/2W 4584, 3 4715.7 N-m-s
W 1.107x 1073 1.107x 1073 s
R 6.3768 x 10° 6.3768 x 108 m
Altitude 0.5005 x 108 (270 n.mi.) m
R 6.8773 x 108 6.8773 x 10° m
T(orbit) 5673 5673 s
GM,_ = p 3.986 x 101 3.986 x 104 m?/s?
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FIGURE 16. WORKSHOP CONFIGURATION B, SIDE VIEW ATM

CSM (Command Service Module). Two of the basic orientations for the two
configurations are the side viewing ATM shown in Figure 8 with the -Z-axis
pointing toward the sun, and the end viewing ATM shown in Figure 7 with the
X-axis pointing toward the sun. Ag used in this study the X-, Y-, and
Z-axes are denoted as the roll, pitch, and yaw axes, respectively. In addition,
both the light and heavy CSM cases were analyzed. The vehicle parameters
and numerical results are shown only for the light CSM case which required
more energy to maintain a specified attitude, because of the greater differences
in the moments of inertia. The desired orbit is circular at 270 n.mi. altitude
with a preferred inclination of 50 degrees, which corresponds to an angle, ¥,
of 73.5 degrees between the orbit and ecliptic plane at winter solstice,

Various environmental forces act on the orbiting spacecraft, with gravity
gradient producing the major disturbance. Unless the OWS is in a gravity
gradient stable mode some form of energy must be continuously applied to
counteract the gravity gradient torques and maintain the desired orientation.
This energy may be in the form of fuel which is expelled through a reaction
jet control system (RCS), a spinning gyroscopic device such as a control
moment gyro (CMG), reaction wheel or fluid flywheel. In the first case, the
RCS motor produces a force, F , which acts through a lever arm, L, to
produce a torque, T . By definition the time rate of change in momentum is
equal to torque, hence
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T = dH/dt (83)

Integrating both sides with respect to time gives the angular impulse which is
identical to the momentum accumulated over the time interval of integration,
A tb :

H:det:fLth:LFAtb (84)

The time interval Atb represents the time that the RCS motors were thrusting.
The fuel weight, W, is given by

W = rhAtb (85)
where m is the rate at which fuel is burned in pounds per second. For chemi-
cal propellants, the performance of a fuel is rated by the fuel's specific impulse

(Isp) which is defined as the thrust of a pound of propellant multiplied by the
number of seconds required to burn it :

1sp = FAt/Am = F/m (86)

The time of burn from equation (84) and the fuel burn rate from equation (86)
are substituted in equation (85) to obtain

W= BT (87)

Since ISp is in units of ""seconds' and H as used in this report is in

"N-m-s" then if L is given in "feet" a conversion factor must be used to obtain
W in "pounds." That factor is 0.7375 ft-lb/N-m, which gives

W(lb) = O.7375H(N—m—s)/ISp(s) L(ft) (88)
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Equation (88) is plotted in Figure 17 for ISp = 220(s) , a typical value; and

L =10 1ft , the approximate radius of the S-IVB stage. Once the momentum

due to gravity gradient is obtained, either Figure 17 or equation (88) is utilized
to obtain the fuel requirements for attitude hold against gravity gradient torques.
The fuel weight, however, becomes excessive for long lifetime missions. For
such missions, it is desirable to utilize in some manner the natural environ-
mental forces in conjunction with a momentum interchange device for space-
craft attitude control.

Reaction wheels, CMG's and fluid flywheels are gyroscopic devices
which convert electrical power into control torque. Both the reaction wheel
and fluid flywheel control are based on the principle of reaction torque. By
accelerating the wheel or fluid a reaction torque is generated on the vehicle.
In addition, a secondary torque is generated by the angular momentum of the
device. In either case the device is hard mounted to the vehicle; hence, momen-
tum cannot be interchanged with the environmental forces.

Igp = 220 (s)

W (pound) = 0.7375 H (Nem-s)
I5p (5) L (F)

Fuel Per Orbit, W (pound)

2 4 6 8 10 12 4 16

Momentum Per Orbit, IH} (103-N-ma) '

FIGURE 17. FUEL WEIGHT VERSUS MOMENTUM
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CMG's are mounted on gimbals and have momentum interchange capa~-
bility. The CMG rotor runs at a constant spin rate, providing a constant angu-
lar momentum vector parallel to the vehicle angular momentum vector under
zero torqgue conditions. Control torques are obtained when the gimbals are
deflected to some angle, causing the CMG rotor to precess and change the
CMG's momentum vector. The time rate of change in the momentum vector
produces a control torque. Once the gimbals reach their physical limits the
CMG can no longer produce control torques and must be desaturated, which
means that the momentum added to the system by the CMG's must be removed.
One method of CMG desaturation is to use RCS in which case fuel weight may
pose a problem for long lifetime missions. A more practical method of CMG
desaturation is to interchange momentum with the spacecraft's natural environ-
mental forces. Such an interchange requires that the attitude pointing require-
ments be relaxed during the desaturation period; however, the total energy
requirements for long lifetime missions can be minimized. For example, if
the solar pointing requirements for an OWS in an ATM mode of operation can be
relaxed during the dark one-half orbit, then gravity gradient torques can be
utilized for desaturation. CMG's with gravity gradient desaturation are planned
for use on the first OWS with an operational ATM. A system of three CMG's
each with double gimbals will provide attitude control. The control logic for
CMG gimbal control and desaturation is rather complex and is outside the scope
of this report, but the characteristics of a single CMG are given in Table V.
Under ideal control without physical gimbal limitations a system of three such
CMG's could produce a maximum of about 480 ft-lb (645 N-m) torque and
6000 ft-lb-s (8100 N-m-s) momentum. As a reference value for accumulated
momentum, the saturation value of 8100 N-m-s has been superimposed on the
total momentum-versus-orbital position graphs contained in this report. In
practice, the CMG's would be desaturated long before they approached their
saturation value.

For preliminary design purposes it is desirable to obtain a quick
evaluation of the magnitude of the gravity torques acting on the orbiting vehicle
so that the control system can be '"sized.'" Once the environmental torques
and momentum are calculated, the necessary fuel weight and/or number of
CMG's for attitude pointing control can be estimated. The equations developed
in this report can be readily utilized for '"quick-look'" analysis and preliminary
design purposes. :

The torque and momentum component equations for the attitude hold

modes considered in this report are summarized below for a winter solstice
launch holding the orbital regression angle and the earth's position about the
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TABLE V, SINGLE CMG CHARACTERISTICS®

Characteristic Value
Rotor Diameter (0.56 m) 22 in,
Rotor Weight (67 kg) 148 1b
Rotor Speed 7850 rpm
Rotor Spin Up Time 7 hr
Rotor Stop Time 2.25 hr
Start Power 170 W
Run Power 54 W
Volume (0.47 m? 16.7 ft?
Weight (190 kg) 418 lb
Threshold Torque (0.08 N-m) 0. 059 ft-1b
Maximum Torque (215 N-m) 160 ft-1b
Threshold Gimbal Rate 0.0034 deg/s
Maximum Gimbal Rate 4.54 deg/s
Angular Momentum (2700 N-m-~s) 2000 ft-lb-s

a. Taken from "Apollo Telescope Mount Subsystem - Black Box
Preliminary Design Review,'" October 30, 1967, MSFC,
R~-ASTR-BA-251-67.

sun constant (A = 270 degrees and Q@ = 180 degrees) . The constants of
integration in the momentum components have been selected such that the
momentum is zero at time zero, The definition of equations (11) and some of
the angle relations are reiterated in equations (89) for completeness;

) =i+ e s

3 1/2
W= GM/RO , (89)
¢ = Wi ;

68



and

and

- 2 -
Cx = (3W0/2) (IZ Iy) ,
89)
C = (8W¥2)(I_ -1 , (
y Wy, -1) (cont'd)
= 2 -
CZ (3Wo/2)(1y IX) .
Equations for the following attitude hold cases have been derived:
1. End View ATM, Solar Fixed, equations (26) and (27)
Tx = CX Sy S2¢ ,
T = -C_S2ps?
y v ¥ S
TZ = = CZ Cy S2¢
(90)

H = (C/2W )S¥(1 - C2¢) ,

H, = (-C/2W)S20(20 -S20)/2

H = (-C_/2W_)Ci(t - C2¢) .

2. Side View ATM, Solar Fixed-XOP Mode, equations (38) and (39)
_ 2
T = CX S22/) S @ s

y
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and

and

(64)

70

= C, SySs2gp ,

= (C/2W )820(2¢ -S29)/2

i (91)
= (C /2W )Cy¥(1 - C2 ,

( y/ o) 4 2 (cont'd)
= (CZ/ZWO) SY(1 - C2¢)
POP Mode, Gimbaled ATM, equations (47) and (48)
= CX S2¢ ,
=90 ,
=0

(92)

POP Mode, Body-Principal Axes Misalignment, equations (63) and



and

(69)

and

T = CX(ZOzx C2¢ + S2¢) .
- 2
T = Cy(ZayS(p) + Cz(cvZ S2¢) ,
- - 2 -
T = CZ(ZozZ Cp) Cy(oty S2¢) >
(93)

H = (C_2W)(2 S2p + 1 - C2¢) ,

H = (ozy Cy/ZWO)(2<p - S2¢) + (az CZ/ZWO)(i - C2¢) ,

H = (o CZ/ZWO)(Zgo + S2¢) - (Ozy Cy/zwo)(i - C2¢)

5. POP Mode, Body-Reference Axes Misalignment, equations (68) and
T = Cx(zéx C2¢p + 8S2¢)

T = C (26 S%0 - 6 S2
y(yqv Zqo)

— _ 2
T, = C,(-26 Clo + 6, 52¢)

- - (94)
H = (C/2W )(26 S2p + 1 - C2¢)

H = (C/2W ) (8 (20 -S2¢9) - 6,(1 - C29)]

H, = (C/2W )[- 6 (2¢ +52¢) + 5 (1 =C29)]
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6. Gravity Gradient Mode, Axes Misalignment, equations (72)

T =0 ,
X

T = -2C « R
y yy

T = 2C «a s
Z Z Z

H =0 ,
X (95)

H =T At ,
y y o

and

H =T At

Z z~ 0

(A to is the time interval over which momentum is evaluated.)

For one orbit at 270 n.mi., Ato = 5673 seconds.

All the torque and momentum equations are functions of three multiplica-
tive terms. The first term, Cx’ Cy’ or Cz’ contains vehicle and orbital

parameters that produce a multiplicative constant. The momentum equations
contain the orbital angular rate and the last three sets of equations (93), (94),
and (95) contain misalignment angles all of which can be grouped into the
multiplicative constant. The second term, sine or cosine functions of ¥, is

a function of the orbital inclination and the angle between the ecliptic and equa~
torial planes. Once the inclination is specified, ¥ becomes constant; hence

the second term g(¥) is also constant. It is interesting to note that the first
and second term when multiplied serve only as a scaling factor in either the
torque or momentum equations. The third term, f(¢) , a function of the
orbital angle ¢ = Wot , determines the shape of both the torque and momentum

when graphed as a function of orbital time. Since torque is, by definition, the
time rate of change of momentum, those values of ¢ which make the torque
zero produce maximum or minimum values for corresponding momentum
components.
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Only the end and side view ATM configurations in a solar fixed orienta-
tion have torque or momentum components, equations (90) and (91), that are
a function of ¥ — all the other equations are independent of orbital inclination.
The g(¢) coefficients are plotted in Figure 18 as a function of both orbital
inclination and the angle % . The gravity gradient effects are maximized by
letting ¢ = 45 degrees, which corresponds to an orbital inclination of 21,5
degrees. The biased torque components, those containing S%¢ terms, produce
momentum components that are secular. Since the biased and secular compo-
nents are multiplied by S(2¢) , they are maximized by ¥ = 45 degrees. The
secular momentum occurs about the Y-axis for the end view case where the
difference in moments of inertia is greatest and about the X-axis for the side
view case where the difference in moments of inertia is least. Hence the end
view case will require more energy to maintain its orientation over a one-orbit
or longer time interval than the side view case.

On examination of equations (90) and (91) with the aid of Figure 18, it
is apparent that the biased torques and secular momentum can be zeroed out
by letting ¥ = 0 or 90 degrees . These values correspond to an orbital inclina-
tion of -23. 5 degrees or 66.5 degrees,respectively. However, orbital injection
conditions other than A = 270 degrees and % = 180 degrees would produce
different ¢ values for which the gravity gradient effects would be maximized
or minimized, although, as pointed out in Figure 5, the maximum or minimum
values of ¥ are obtained at either a summer or winter solstice launch. It is
further noted that the end view case, equations (90), reduces to the POP mode
case, equations (92), for @ =90 degrees, and that the two axes misalignment
POP mode cases, equations (93) and (94), also reduce to the POP mode case
when the misalignment angles are zero. Next, the torque and momentum
components will be evaluated for a selected vehicle configuration.

The end and side view torque and momentum equations are evaluated
using the vehicle data listed in Table IV. Several selected values for the
ecliptic-orbital plane angle are substituted into equations (90) and (91). The
results are summarized in Tables VI and VII for % =0, 45, 73.5, and 90
degrees. The last column is the f(¢) multiplicative factor which completes
the equations, that is, each equation is of the form

T (he) or H (4o = [ckgk(zm]fk«p) (96)

where C is the first multiplicative term containing vehicle parameters, g(¥)
is the second multiplicative term, a function of orbital inclination, and f(¢)
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TABLE VI,

END VIEW ATM TORQUE AND MOMENTUM

C g(¥) p=0 | =45 |p=173.5 |P=90 )ff((p)
0.225 Sy 0 0.159 0.216 0.225 | S2¢
10.678(2y) | © 10.67 | 5.82 0 Sy
-10.44 Cy -10.44 | -7.38 -2. 96 0 S2¢

102 Sy 0 72.1 97.8 102 1 ~C2¢p

4817 S29 0 4817 2625 0 (2¢ -82¢)/2
-4716 Cy -4716 | -3334 -1339 0 1 -C2p

TABLE VII. SIDE VIEW ATM TORQUE AND MOMENTUM

C g(¥) p=0 | ¥=45 | P="73.5 |P=90 X£( )
0.307 S23 0 0.307 0.167 0 S2p

-10.46 Cy -10.46 | -7.40 -2, 97 0 S2¢
10.15 Sy 0 7.18 9.73 10.15 | S2¢
138.8 S2p 0 138.8 75.65 0 (2¢ -82¢)/2
4723 Cy 4723 | 3392 1341 0 1-C2¢
-4584 Sy 0 -3241 -4396 -4584 | 1 -C2¢
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is the third multiplicative term which determines the shape of the torque or
momentum. The first and second terms are grouped together to produce a
scaling factor for each ¥ value. The f(¢) functions are plotted in Figure 19.
Multiplying f(¢) by the appropriate scaling factor produces the torque and
momentum components.

The total angular momentum, a measure of energy required for attitude
hold, is obtained by taking the square root of the sum of the components squared,
that is

1
- 2 2 2Ya
[H| = (Hx + Hy + Hz) (97)

It is convenient to plot the torque and momentum components as well as the
total angular momentum as a function of the orbital angle ¢ = Wot . To

establish a reference point for momentum, the saturation value of a three-CMG
system, as used on the ATM, is superimposed on the graphs of total momen-
tum.

The torque and momentum for the end view ATM configuration in a solar
inertially fixed orientation (Table VI) are shown in Figures 20 through 24. Two
cases for momentum have been plotted, one with the constants of integration
evaluated to make the momentum zero at ¢ =0 and the other with the constants
of integration set equal to zero in which case the momentum at ¢ =0 is not
necessarily zero. As noted from Figure 20 the biased torque occurs about the
Y-axis to produce a secular momentum component on the same axis as shown in
both Figures 21 and 22. The biased torque is a maximum value since the
differences in moments of inertia are greatest in the gravity gradient torque
equation for the Y-axis. The secular momentum components exceed the
3-CMG saturation level after one-fourth orbit for either momentum case with
P = 45 degrees . The total momentum for each case is shown in Figures 23 and
24, Note that about six CMG's would be required for attitude hold over one-half
orbit.

The torque and momentum for the side view ATM configuration (Table
VII) in a semi-golar fixed orientation (XOP Mode) are shown in Figures 25
and 29. The biased torque component is about the X-axis, Figure 25, where the
differences in inertias are least. Again two momentum cases are shown,
Figures 26 and 27. Although the vehicle parameters are similar, the accumu-
lated momentum for the XOP mode is much less than the end view ATM, solar
fixed mode. This difference is due to constraining the axis of minimum principal
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Coefficient, f (®) (unitless)

Coefficient, f () (unitless)
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inertia to lie in the orbital plane. The momentum components for the two side
view cases are different. Figure 26 indicates that the Y and Z momentum
components are biased; whereas, Figure 27 indicates that they are cyclic. This
difference is dramatically portrayed in Figures 28 and 29. With H(0) =0,

the 3-CMG saturation limit occurs before one-fourth orbit; whereas, for

H(0) # 0, the limit is not reached in one orbit. Plotting the values shown in
Figure 29 over a much longer time interval shows that the limit is reached
after 7 orbits for ¢ = 45 degrees and after 15 orbits for ¥ = 73.5 degrees ,
corresponding to an inclination of 50 degrees (Fig. 30). Hence, a comparison
of the two momentum cases illustrates the value of initialization. However, the
conclusion should not be assumed that letting the constants of integration be
zero [H(0) # 0] always procedures the least severe momentum requirements.
Once the number of CMG's necessary for control has been determined, it is
the secular momentum build-up that determines the time at which the CMG's
must be desaturated. The number of CMG's is determined by the magnitude of
momentum accumulated over the time interval during which pointing control
must be maintained. Initialization is equivalent to mounting the CMG's so that
the center of their linear operating range corresponds to that of the gravity
gradient disturbance momentum.

12000 TEECEP T PO PO e
- p= 45 degrees — H
§ 3 CMG SATURATION | W= 73.5 degrees 50f
z R = 0 degree T 8,757'H
— S ' w= 90 degrees / [
X 8000 f H Hef !
z‘ _m : E N
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z t £ 14,842
= i 2 ed SRR 15
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= Y ﬁ ! o gt
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FIGURE 28. SIDE VIEW ATM, TOTAL MOMENTUM [H(0) = 0]
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The side view ATM configuration parameters are used in equations (92)
to generate the torque and momentum components for the POP Mode case shown
in Figure 31. A vehicle in the POP Mode orientation is in an unstable equilib-
rium position. For a symmetric vehicle, both the torque and momentum would
be zero without axes misalignment; but since the side view configuration is not
quite symmetric, a cyclic torque appears about the X-axis.” Both the torque and
momentum are in the noise level as compared to either the end or side view
cases. However when axes misalignment cases are considered the torque and
momentum requirements go up drastically. Figure 32 shows the torque and
Figure 33 the momentum components for the principal axes being misaligned
from the body axes by an angle of 6 degrees on each axis, equations (93). Biased
torque and secular momentum components appear about both the Y~ and Z-axis.
A similar result occurs for reference axes misalignment, equations (94), which
is shown in Figures 34 and 35. The total momentum, plotted in Figures 36 and
37, indicates that either principal-body or reference-body axes misalignment
produces the same magnitude of momentum requirements for attitude hold .
against gravity torques. The torque and momentum components were evaluated
for three misalignment angles, 0.6, 3.0, and 6.0 degrees,about each axis.
Although the components are not shown for the first two angles, the total momen-
tum is shown for each angle. The results indicate a linear increase in accum-
ulated momentum as the angles are increased. A three-degree angle produces
4150 N-m-s momentum after a one-orbit time period, which is about the same
as the end view case with initialization so that a 3-CMG system could provide
control. As illustrated, the POP mode without misalignments produces vir-
tually no control requirements, but as misalignment angles are introduced the
requirements become rather severe. This trend would be expected to occur for
the other modes or orientation, which poses the unanswered question: with
what accuracy are the principal axes known for a large clustered space station ?

Equation (95) represents a spacecraft in a gravity gradient stable
mode; that is, the axis of minimum inertia is aligned with the local vertical
and the axis of maximum inertia is aligned with the orbital spin vector. With~
out axes misalignments, both the torque and momentum requirements are zero.
As small misalignment errors are introduced about each principal body axis,
torque and momentum build up linearly about the Y- and Z-axes. For a given
angle both the torque and momentum are constant, hence graphs versus orbital
position are not shown. But the total momentum as a function of angle errors
about the Y- and Z-axes is depicted in Figure 38. The 3-CMG saturation value
is reached after one orbit by assuming a 3-degree misalignment angle about the
principal axes. A 3-degree error is equivalent to an angle of 4. 24 degrees
measured from the local vertical to the vehicle axis of minimum inertia (the
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MOMENTUM, [H| (103-N-m-s/orbit)

MISALIGNMENT ANCLES 8y AND 35, (degree)

FIGURE 38. GRAVITY GRADIENT MODE MOMENTUM
DUE TO AXES MISALIGNMENT

X-axis). Since small angle approximations have been used, © is defined by
the square root of the sum of the misalignment angles squared.

Using 9 as a parameter and assuming that two principal axes of inertia
are identical (Iy = Iz) , normalized momentum as a function of © is shown in

Figure 39. This chart can readily be used for preliminary design, along with
Figure 17, to determine fuel weight requirements., First the attitude error,

© , from local vertical is either assumed or calculated using equation (61)
and the products of inertia. Then the normalized momentum value is obtained
from Figure 39 and using specific vehicle parameters for (Iy - IX) the total

momentum is calculated. Last, the equivalent fuel weight is determined
using Figure 17. Using vehicle parameters for the side view ATM configura-
tion, the fuel weight per orbit as a function of misalignment angles and attitude
error from the local vertical is shown in Figure 40.
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The energy requirements for attitude hold are summarized for various
orientations in Table VIII for ¥ = 45 degrees , a maximizing value. The type
torque and the maximum accumulated momentum about each axis over a one-
orbit time period is given for each mode. The number of control moment gyros
is determined to counteract both the cyclic and secular gravity gradient momen-
tum components over one-half orbit. Since the cyclic torques have a period
one-half that of the orbit, the number of CMG's listed can counteract the cyclic
components over an extended time period. Therefore, the pounds of fuel listed
under each mode is the amount required to counteract only the secular momen-
tum components that result from biased torques. In calculating the fuel weight
per orbit, a specific impulse of 220 seconds for the fuel and a RCS lever arm
of 10 feet are assumed. If a 20-foot lever arm is assumed, the fuel weights
listed would be halved.

The maximum momentum values are obtained: from the momentum
component versus orbital position plots. The values listed with biased torques
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are taken at the end of one orbit and represent secular momentum components.
If there is more than one secular component. per mode, as in Mode 4 POP
(6 degrees), then the total value, the square root of the sum of secular compo-
nents squared, is used for fuel weight calculations. Once the momentum is
determined, the fuel weight per orbit is obtained by using Figure 17. Since a
spacecraft makes about fifteen orbits per day in a 270 n.mi. orbit , daily fuel
consumption is obtained by multiplying the fuel per orbit by fifteen.

In comparing the solar fixed modes the advantage of the side view ATM
configuration with the axes of minimum inertia in the orbital plane (XOP Mode)
over the end view ATM configuration (Solar Mode) is apparent. The solar mode
requires 6-CMG's and 55 845 pounds of fuel per year, whereas the XOP mode
only requires 3-CMG's and 8760 pounds of fuel per year, The solar mode, with
Y = 45 degrees, represents the worst possible case; because axes misalign-
ments would, in this case, reduce energy requirements, whereas axes mis~
alignments on the optimized XOP mode would increase energy requirements.

There are no biased torques in the POP mode case and the cyclic com~
ponents are small in magnitude, For comparative purposes an all RCS control .
system is assumed, and the fuel weights listed are those required to counteract
the cyclic torque. After one-fourth orbit the maximum accumulated momentum
is 278 N-m-s {in Figure 31, H(O0) = 0], after which the momentum decreases
to zero at one-half orbit. During the period from ¢ = 90 degrees to 180 degrees,
momentum equal to 278 N-m-s is taken from the system. Hence the total
momentum for one orbit is 4x 278 N~-m-s = 1112 N-m-s which is equivalent
to 0.4 pound of fuel per orbit (taken from Figure 17 and listed in Table VIII).
However, when axes misalignments are introduced, Mode 4 POP (6 degrees)
in Table VIII, secular momentum components appear about both the Y- and
Z-axes resulting in a factor of seven increase in fuel requirements for 6 degrees
misalignment as compared to the no misalignment case.

A vehicle in a gravity gradient hold mode with 6-degree misalignments
about each principal axis experiences constant magnitude torques. The case
represented by Mode 5 G.G. (6 degrees) of Table VIII is equivalent to attitude
hold with the axis of minimum inertia at an angle of 8.4 degrees to the local
vertical. Constant magnitude torques produce momentum which increases
linearly with orbital time. After one orbit at 270 n.mi. the total accumulated
momentum is 16 500 N-m-s (Fig. 38) which required a fuel weight of 5.6 pounds
(Fig. 17). However, the same results can be directly obtained from Figure 40
which gives the fuel weight as a function of the misalignment angles for the side
view ATM configuration. When compared with the POP mode misalignment case,
the gravity gradient mode with misalignments requires twice as much fuel for
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attitude hold, an unexpected result. However, the POP mode has one axis
oriented in the plane defined by a vector perpendicular to the orbital plane

and the sun line vector; hence the vehicle continuously rolls with respect to the
local vertical. 1In the G.G. mode, the vehicle is stationary with respect to the
local vertical. The vehicle can be made stationary in the POP mode with respect
to the local vertical by setting ¢ = 0 in either equations (93) or (94), in which
case constant torques appear about the X- and Z-axes and the Y~axis component
is zero. Since the vehicle is near symmeitric about X-axis, the X-axis torque
and momentum is near zero, and the Z-axis contributes most of the momentum
requirements which are one-half that of the G.G. mode. But if the POP mode
is rotated 90 degrees so that the X-axis is aligned with the velocity vector then
the momentum is identical with the G.G. case with constant torques on the Y-
and Z-axes. The conclusion is that axes misalignment effects are twice as
severe for a G.G. mode as for a POP mode,

CONCLUSIONS AND RECOMMENDATIONS

In the previous sections the basic gravity gradient torque and momentum
equations have been derived for a spacecraft in an earth orbit. Various coor-
dinate systems were then defined in order to specify the spacecraft's position at
any time relative to an inertial reference frame and to resolve the local radius
vector into body fixed components. Transformations relating the defined coor-
dinate systems were derived in the form of a matrix composed of directional
cosines. Next, several specific vehicle attitude hold orientations, as solar
inertial, XOP and POP modes, were selected and the gravity gradient torque
equations were derived for each case, utilizing the transformational matrix to
resolve the local vertical vector into body axes components. Then, the effects
of body axes misalignments on gravity torque were considered and expressions
for several "look angles' of interest were derived. Finally, the energy
requirements for attitude hold against gravity gradient were calculated for the
previously selected orientations and a comparison between attitude hold modes
was made.

Based on the energy requirements, the POP mode with the axis of
minimum inertia aligned perpendicular to the orbital plane optimizes fuel and
CMG requirements, especially when principal axes misalignments are con-
sidered. If a solar inertially fixed mode is desired, then constraining the axis
of minimum inertia to lie in the orbital plane (XOP mode) results in minimum
energy requirements. Furthermore, momentum storage initialization can be
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effectively utilized to reduce either the number of CMG's or the size required

for control of cyclic perturbations, especially for the POP mode orientation.

The equations developed for the various attitude hold modes can easily be adapted
for use on configurations other than the side and end view ATM workshops.

The coordinate systems and transformations can be utilized to evaluate
the effect of time of year and time of launch on gravity gradient torques, provid-
ing a means of relating the orbital, equatorial and ecliptic planes through
physically meaningful parameters. The resulting directional cosines can be
quickly evaluated for fixed time of year and orbital plane analysis which produces
simplified transformations that can be used to evaluate the gravity torque and
momentum components without resorting to elaborate machine computations.
It has been shown that these simplified components are always scaled sine or
cosine functions, f(¢@) , of the orbital angle (Fig. 19). For preliminary
design purposes, the scaling factor is determined using specified vehicle and
orbital parameters, then the torque or momentum component is obtained by
multiplying the scaling factor by the appropriate f(¢) function. Energy require-
ments to counteract gravity gradient is the dominant consideration in recommend-
ing a preferred attitude hold orientation.

The equations derived for various look angles enable the engineer to
determine gimbal angle limits and rates required for experiment pointing con-
trol. Also, the solar look angles help establish both solar panel and ATM gim~
bal requirements, especially if the OWS is in an orbital fixed mode, such as
POP. Closed form solutions are given for several angles of interest; others
can be readily derived using the defined coordinate systems and transformations.

Addtional work should be done to relate momentum components to fuel
weight and CMG requirements for various attitude hold orientations. Nomo-
graphs could be prepared in normalized nondimensional form for each specific
orientation, and utilized for "quick look" analysis needed to size the control
system and establish fuel storage requirements. Basic stability characteristics
and sensor locations should be related to vehicle orientation and the various
attitude hold modes.
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APPENDIX
EULER EQUATIONS

For completeness, a derivation of the Euler equations is outlined below,
along with a systematic procedure for obtaining the Euler kinematic relations.
The Euler equations express the rotational dynamics of an orbiting spacecraft
in response to the applied torques as functions of the vehicle inertial properties
and body angular rates. The Euler kinematic relations are three equations
which express the body angular rates as functions of the transformational angles
and rates used in the directional cosine matrix relating the body and inertial
reference coordinate systems.

The torque required to change the angular momentum of a system is
equal to the time rate of change in angular momentum, from equation (55)
the angular momentum is given by

H=Ta (A1)
Hence, the applied torque T is equal to
T-H+3x 0| (A2)

Carrying out the vector-matrix operations and regrouping terms, the compo-
nents of torque are

T :fl + hw - huw
X p:4 zZy y z

Z X (A3)

and

T

fl—i—hw - hw
4 z y X

XYy

Equations (A3) are known as Euler's moment equations. The components of
H are defined by equation (54) as
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X X VY XZ Z
h =~-1 w +1w -1 w ,
y VX X yy yZ z (A4)
and
h =1 w -1 w +1uw .
z ZX X Zy ¥ z

Assuming that principal axes are selected as control axes, the products
of inertia are zero. By setting the applied torques (TX, Ty’ and Tz) equal

to the gravity gradient torques of equation (10), the Euler equations (A3) for
principal control axes become '

T =Iw + (I -I)ww =CRR
X X X z 'y zy X zy
Ty = Iywy + (IX--IZ)cf.)XcuZ = CnyRz (A5)
and
T =TIw + (I -I)ww =CRR
Z Z Z y X 'y X Z'y X

The applied gravity torques contain components of the local radius
vector which are known functions of the directional cosines in the transforma-
tional matrix that relates the inertial and moving body reference frames. The
Euler equations contain components of angular velocity which are known only
in general body axis components. However, if the directional cosine matrix
is known the components of angular velocity can be obtained as functions of the
rotational angular rates, which are then substituted into Euler's moment
equations.

Consider the rows of the transformational matrix as vectors,

eq rAn Ay Agg
A= Le | =] Ay Ayp Ay (A6)
Le3 ! Ay Ay Ag
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It can be shown that

w = €9 o €
X 2 3 ’
w = B3 + O
and
w = € €,
7, 1 2

Equations (A7) relate the body axes angular rates to rotational rates
and angles used in the transformation matrix and are known as Euler's kine~
matical relations. These relations are commonly derived by transforming each
angular rate into body coordinates and then summing the components to produce
the body angular rates (wX, wy, wz) . The Euler kinematic relations, however,

can be obtained by a systematic procedure using equations (A7), after which the
body angular rates are substituted into the Euler equations (A5) to obtain the

dynamic rotational equations for an earth orbiting spacecraft under the influence
of gravity.
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